Technical considerations for successful durable left ventricular assist device implantation in a small child

Tomoki Ushijima, MD, PhD, Satoshi Fujita, MD, PhD, Yuichiro Hirata, MD, Akira Shiose, MD, PhD

PII: S2666-2507(24)00144-5
DOI: https://doi.org/10.1016/j.xjtc.2024.03.015
Reference: XJTC 1656
To appear in: JTCVS Techniques

Received Date: 27 January 2024
Revised Date: 15 March 2024
Accepted Date: 20 March 2024

Please cite this article as: Ushijima T, Fujita S, Hirata Y, Shiose A, Technical considerations for successful durable left ventricular assist device implantation in a small child, JTCVS Techniques (2024), doi: https://doi.org/10.1016/j.xjtc.2024.03.015.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2024 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Technical considerations for successful durable left ventricular assist device implantation in a small child

Tomoki Ushijima, MD, PhD, Satoshi Fujita, MD, PhD, Yuichiro Hirata, MD, Akira Shiose, MD, PhD

Department of Cardiovascular Surgery, Department of Pediatrics, Kyushu University Hospital, Fukuoka, Japan

Disclosure statement: The authors have no conflicts of interest to report.

Finding statement: This study was not supported by any funding sources.

IRB approval: Ethics review is not required for case report implementation in our institution.

Informed consent statement: Patient informed consent was secured.

Corresponding author: Akira Shiose, MD, PhD

Department of Cardiovascular Surgery, Kyushu University Hospital

3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, JAPAN.

E-mail: shiose.akira.799@m.kyushu-u.ac.jp

Word count: 747 words
Glossary of abbreviations

BSA, body surface area; HM3, HeartMate 3; LV, left ventricular; LVAD, left ventricular assist device.

Central Picture Legend

The HeartMate 3 implantation in a child with BSA of 0.72 m².

Central Message

The HeartMate 3 was implanted in a child with BSA of 0.72 m² using “push-in” apex technique.
Main Text

The HeartMate 3 (HM3) (Abbott, Chicago, IL, USA) left ventricular assist device (LVAD) demonstrates superior clinical outcomes compared to previous LVADs [1], and its availability is expanding to younger and smaller patients [2, 3]. However, the lower limit of patient body size has not yet been determined. Some technical considerations are necessary for safe HM3 implantation in the smaller child. We report the technical issues associated with the successful implantation of the HM3 in a small child. Patient informed consent was orally obtained for publication of data. Institutional review board approval was not required for this case report; there was no potentially identifiable information in this article.

A 9-year-old girl with refractory left ventricular (LV) noncompaction cardiomyopathy, supported by an extracorporeal LVAD with a centrifugal pump for approximately 3 months, underwent HM3 implantation as a bridge to transplantation (Figure 1A). The patient’s body weight and body surface area (BSA) were 15.9 kg and 0.72 m², respectively. During HM3 implantation, the LV apex was carefully cored with attention to the location of the papillary muscles, and the inflow mini-cuff was secured in the usual manner as for adult patients. The inflow cannula was placed in the apical cuff with slight longitudinal pushing of the LV apex, enabling placement of the pump body in the intrapericardial cavity. The position of the inflow cannula tip was confirmed carefully with intraoperative
transesophageal echocardiography (Figure 1B, C). The outflow graft was anastomosed to the previous outflow graft of extracorporeal LVAD. Chest closure did not compromise the pump position or interfere with the mitral apparatus and the interventricular septum. Postoperative transthoracic echocardiography showed normal mitral valve function and no interference with the LV wall (Figure 1D, E, and Video). Antithrombic therapy included aspirin and warfarin. Two months after implantation, the monitored LVAD flow constantly ranged from 2.8 to 3.5 L/min at 4,200-4,400 rpm, without suction events, low-flow alarms, or hemolysis.

There were several concerns associated with HM3 implantation in this small child. The first was whether the pump could be placed in the limited thoracic cavity without compromising LVAD flow. Although several preoperative virtual simulations have been described [4], none are conclusive. We focused on the LV morphology. The distance from the LV apex to the mitral valve was 7.8 cm on preoperative computed tomography (Figure 2A) and a pump height was approximately 5.5 cm. We deemed that the HM3 could be implanted by pushing the LV apex without entrapping the mitral valve leaflets. Postoperative computed tomography showed that the distance from the tip of the inflow cannula to the mitral valve was 2.6 cm (Figure 2B), almost matching the preoperative assessment. Intraoperatively, it was also helpful to actually push the LV apex before coring the LV apex. We believe that close morphological assessment of the intracardiac structures, such as the mitral apparatus, papillary muscles, and interventricular septum, allows for appropriate “push-in” of the LV
apex without mitral valve dysfunction and collision of the inflow cannula tip with the LV wall and interventricular septum. Additionally, with this technique, the inflow tip could be positioned in a wide space at the LV base. Postoperative computed tomography confirmed that there was sufficient apace around the inflow tip (Figure 2B). In other words, by pushing the LV apex, the rugby ball-like LV morphology can be transformed into a spherical shape, possibly allowing sufficient space around the inflow tip, leading to stable pump performance. This tip location may result in less occurrence of suction events, positively affecting less-thrombogenity and stable blood drainage into the pump. If mitral valve function is compromised, mitral valve replacement with a low-profile prosthesis should be considered [5].

The second concern was the potential for frequent alarms despite pump setting optimization. In this patient, the actual flow level of the extracorporeal LVAD was >3.0 L/min, which contributed to simulating the post-implant flow level. The third concern was the development of late right heart failure and aortic insufficiency. We intend to continue to follow this patient.

This report highlights significant technical considerations impacting the successful implantation of the HM3 in a small child. In a reported multicenter study, the smallest patient weighed 17.7 kg and had a BSA of 0.73 m² [3]. Our patient weighed 15.9 kg and had a BSA of 0.72 m². Although pediatric HM3 implantation is still challenging, sufficient preoperative
and intraoperative assessments allow for greater implantability in the population with the
smallest body size. Our implantation technique can contribute to expanding use of the HM3 in
small children.

Acknowledgments

The authors would like to thank Editage (http://www.editage.jp) for English language editing.

References

 2019;380:1618-1627.

 experience with the HeartMate 3 continuous-flow ventricular assist device in pediatric
 patients and patients with congenital heart disease: A multicenter registry analysis. J

 Expanding use of the HeartMate 3 ventricular assist device in pediatric and adult
 patients within the Advanced Cardiac Therapies Improving Outcomes Network

Figure legends

Figure 1: (A) Postoperative radiography. (B, C) Intraoperative transesophageal echocardiography showing that the inflow cannula was directed toward the mitral valve and that there was sufficient distance between the tip of the inflow cannula and the mitral apparatus. (D, E) Postoperative transthoracic echocardiography showing normal mitral valve function and no interference with the left ventricular wall.

AV, aortic valve; IC, inflow cannula; MV, mitral valve.

Figure 2: (A) Preoperative computed tomography showing a distance of 7.8 cm from the left ventricular apex to the mitral valve. (B) Postoperative computed tomography showing a distance of 2.6 cm from the tip of the inflow cannula to the mitral valve.

M, Mitral annulus level.
Video legend

Postoperative transthoracic echocardiography shows normal mitral valve function, reduced degree of mitral regurgitation, and no interference with the LV wall.