Paraconduit Hernias After Minimally Invasive Esophagectomy

Stephanie H. Chang MD, MSCI; Daniela Molen MD

1. Division of Thoracic Surgery, Department of Cardiothoracic Surgery, New York University Langone Health, New York NY, USA

2. Thoracic Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY

Funding: None

COI: The author has no conflicts of interest

Word Count: 1565/2500

Corresponding author:

Stephanie H. Chang MD

New York University Langone Health

Department of Cardiothoracic Surgery

530 First Avenue

Suite 9V

New York, NY 10016

stephanie.chang@nyulangone.org

212-263-0695 phone

212-263-0437 fax
Central Picture Legend: Paraconduit hernia with colon herniating to the left of the conduit.

Central Message (200 character): Paraconduit hernias after minimally invasive esophagectomy are managed with surgical repair. Multiple repair techniques have been described, though roughly 1/3 of repairs still result in recurrence.

Perspective statement: Paraconduit hernias occur in 2.8-15% of patients who undergo minimally invasive esophagectomy. Repair focuses on reducing the hernia contents, creating a tension free closure of the defect, and preserving the blood supply to the gastric conduit, though roughly 1/3 of these repairs fail and result in recurrence.
Introduction

Esophageal cancer remains an aggressive malignancy, with surgery playing a critical role in treatment of resectable disease. Esophagectomy is a complex procedure, with the potential for developing a para-conduit hernia months to years after surgery. The likely etiology is recurrent gastric distention and decompression, leading to gradual enlargement of the hiatus. Though some patients with a para-conduit hernia may be asymptomatic, a majority of patients (56-83%) have symptoms such as abdominal pain, dyspnea, dysphagia, chest pain, nausea or constipation. Patients with these symptoms should undergo a computed tomography (CT) scan of the chest and abdomen to assess for possible paraconduit hernia.

The most common hernia contents are colon (67-92%), small bowel (8-21%), pancreas (11%), and omentum. In the series by Kent et al, 87% of paraconduit hernias were located to the left of the gastric conduit, with abdominal contents herniating into the left pleural space. The other 13% of patients had the hernia posterior to the conduit, with abdominal contents in the right chest. The hernia may also compress the distal conduit leading to outflow obstruction (Figure 1).

Incidence after MIE

Interestingly, as the technique of esophagectomy has changed from open resection to minimally invasive, the incidence of para-conduit hernia has also risen. In a large single institution analysis, the incidence of diaphragmatic/hiatal hernia after minimally invasive esophagectomy (MIE) was 2.8% (16/581), versus 0.8% (4/494) after open esophagectomy. A meta-analysis of twenty-six studies showed similar findings with symptomatic hiatal hernia occurring in 4.5% of MIE versus 1.0% of open esophagectomy cases, while another institutional study showed a rate of 15% in MIE versus 8% in open. One possible explanation is less postoperative adhesions with MIE, allowing for more mobility of intra-abdominal contents through the hiatus. Additionally, the time from surgery to diagnosis of hiatal hernia was shorter in MIE, with a median of 8.8 months (range 6-29 months) after MIE versus 21 months (range 9-31 months) after open esophagectomy. The role of Ivor Lewis versus transhiatal esophagectomy, effect of neoadjuvant treatment, and impact of obesity on the incidence of paraconduit hernia development is unclear.

Indications for Repair

All patients who present with symptoms from a paraconduit hernia should undergo operative repair. While surgical repair in asymptomatic patients is controversial, there is risk associated
with conservative management of paraconduit hernias. An untreated paraconduit hernia could have continued progression and lead to eventual emergent repair, which has a reported mortality of 14-25%. Given the risk of eventual incarceration or perforation, with resultant higher morbidity and mortality, careful consideration should be given to repairing all paraconduit hernias at the time of presentation. Prior to offering surgical repair, patients with a history of malignancy should undergo a positron emission tomography (PET) scan to assess for recurrent or metastatic disease.

Repair of Paraconduit Hernia

When repairing the paraconduit hernia, the primary steps are to reduce the hernia contents, create a tension free closure of the defect, and preserve the blood supply to the gastric conduit. Often, these hernias can be closed with primary repair using a minimally invasive abdominal approach. In rare situations, such as redundant conduit requiring concurrent repair or perforated viscus in the thoracic space, a thoracotomy or minimally invasive thoracic surgery may also be needed to repair those complications.

Ports should be placed in the standard position for a hiatal hernia repair, with port placement depending on robotic abdominal or laparoscopic approach. After accessing the abdomen and placement of a liver retractor, lysis of adhesions should be performed to expose the hiatus. Once the hiatus and hernia is visible, the hernia contents are mobilized and reduced (Figure 2). Due to prior dissection of the hiatus during the MIE, no true hernia sac is present. Any intrathoracic adhesions to the hernia contents should be divided to appropriately reduce all abdominal organs. Throughout the dissection, care must be taken to not injury the gastroepiploic artery feeding the gastric conduit (right gastroepiploic).

The defect should be closely evaluated. The crura is re-approximated to help decrease the size of the defect. The posterior crural space should be closed primarily with large (0) non-absorbable suture. The closure can either be performed with interrupted sutures or running with locking sutures. Pledgets should not be used due to risk of erosion into the conduit. During the posterior crural closure, the conduit is retracted using a penrose (Figure 3) and attention should be given to prevent anterior displacement of the conduit. While other papers describe anterior crural closure being preferential to posterior crural closure, the authors recommend posterior closure in order to maintain the curve of the anterior crura. To close the residual hernia defect, conduit is tacked to the left crus (Figure 4), anterior crura, and to the right crura (Figure 5), such that the only area of weakness is when the right gastroepiploic arcade enters the hiatus. For all these steps, the right gastroepiploic artery should be visualized and protected from injury.
In larger defects, a tension free closure with reapproximation of the crura and tacking the conduit to the hiatus may not be feasible. In these situations, mesh is necessary to help create a tension free repair with elimination of the defect. While direct placement of the mesh to the conduit and crura has been described\(^8\), this technique is not recommended due to reports of mesh eroding into the pedicle or the gastric conduit. The rate of erosion is less with biologic mesh, but there is a higher failure rate. If mesh is necessary, a relaxing incision should be created with primary closure of the defect as described in the paragraph above, and synthetic mesh (such as goretex) closure of the relaxing incision with non-absorbable suture. The relaxing incision can be created in the right diaphragm between the inferior vena cava and right crus (for smaller defects) or in the lateral left diaphragm along the insertion of the ribs (for larger defects). If a thoracotomy is indicated for repair, another alternative is the use a pedicle flap of pericardium to close the large hiatal defect using non-absorbable suture, with mesh closure (such as bovine pericardium) of the pericardium with non-absorbable suture.

At the end of the operation, an esophagostroscopy should be performed to ensure that the conduit is not kinked from the crural closure. There should be a low threshold for pyloric dilation to help with emptying and decompression of the conduit.

Recurrence after Repair

Recurrent hernia after repair of paraconduit hernias remains high. In one study, 6 of 22 (30%) repairs recurred at 1 year, as seen on imaging.\(^3\) All recurrences occurred along the greater curve, and all were repaired again. However, 2 of the 6 repairs resulted in a third paraconduit hernia. A different large institutional series showed 4 out of 14 repairs failed.\(^6\) Similarly, all recurrences were repaired with a 25% recurrence rate after the second repair. This high rate of recurrence demonstrates the technical challenge of repairing paraconduit hernias, as 360 degree closure of the defect is difficult due to need to preserve the gastroepiploic blood supply running through the hiatus.

One reported method that allows for 360 degree closure of the paraconduit hernia defect involves imbricating the gastric conduit over the gastroepiploic artery at the level of the hiatus.\(^9\) This technique protects the blood supply to the gastric conduit, and allows for the entire hiatal defect to be tacked to the gastric conduit. This repair was performed in 5 patients – long term follow up in 4 patients demonstrated no recurrence. Intraoperative use of indocyanin green demonstrated good perfusion of the conduit after repair, confirming protection of blood supply to the conduit.

Prevention
Given the challenge of creating a durable repair for a paraconduit hernia, prevention of the hernia at the time of MIE is essential. While there are no proven methods to prevent paraconduit hernia, some techniques are available to potentially decrease the likelihood of hernia formation. It is essential to avoid unnecessarily enlarging the hiatus, which can occur with the surgeon’s hand during transhiatal esophagectomies. Hiatal enlargement is rarely needed during Ivor Lewis esophagectomies (open or MIE). During the dissection of the hiatus, opening the left pleural space should be avoided, as many of the paraconduit hernias occur into the left chest. In transhiatal or modified McKeown esophagectomies, the gastric conduit can be tacked to the left and right crus after the esophagogastric anastomosis is created.

During Ivor Lewis esophagectomies, tacking of the conduit the crus can also be performed. Some surgeons will push the gastric conduit into the right chest during the abdominal portion of the procedure, and suture the conduit to the left and right crus – however, this technique can create issues if the gastric conduit is short, leading to tension on the esophagogastric anastomosis. Another possibility is selective prevention in high risk patients, such as young patients, patients with a large hiatus, or those with a hiatal hernia at time of MIE. In this subset of patients, after the thoracic portion of the Ivor Lewis esophagectomy is done, the abdomen is re-entered for closure of the posterior crura and tacking the conduit to the bilateral crus.

Conclusion

Paraconduit hernia after MIE remains a complex problem with a high rate of recurrence after repair. Described preventative techniques have not been definitively shown to prevent formation of paraconduit. Repair of paraconduit hernias should focus on reducing the hernia contents, creating a tension free repair of the defect with no mesh on the gastric conduit, and protection of the blood supply to the conduit.
References

Figure Legends

Figure 1. Axial image of chest computed tomography scan demonstrated a dilated conduit with evidence of outlet obstruction and right sided paraconduit hernia containing colon.

Figure 2. Paraconduit hernia with gastric conduit on the right and colon herniating between the conduit and left crus.

Figure 3. Posterior crural stitches are being placed, with the gastric conduit encircled by a penrose and retracted to allow for visualization.

Figure 4. The gastric conduit is being tacked to the left crus using permanent suture.

Figure 5. Completed repair of paraconduit hernia after posterior crural closure and primary closure of the defect with stitched tacking the esophagus to the right and left crus.

Video: Paraconduit hernia surgery
Distended conduit

Colon