A novel intracorporeal right ventricular assist device implantation technique in a young patient

Constantine D. Mavroudis, MD, MSc, MTR, Madison A. Grasty, MD, MS, Kathryn Restaino, MD, Catherine M. Montgomery, BSN, RN, CPN, Alee N. Pettit, BS, Matthew J. O’Connor, MD, Carol Wittlieb-Weber, MD, Jonathan B. Edelson, MD, Jonathan Edwards, MD, Justin Berger, MD, PhD, Kimberly Lin, MD, Joseph Rossano, MD, Katsuhide Maeda, MD, PhD

PII: S2666-2507(23)00405-4
DOI: https://doi.org/10.1016/j.xjtc.2023.10.025
Reference: XJTC 1554

To appear in: JTCVS Techniques

Received Date: 19 July 2023
Revised Date: 3 October 2023
Accepted Date: 15 October 2023

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
A novel intracorporeal right ventricular assist device implantation technique in a young patient

Constantine D. Mavroudis, MD, MSc, MTR
Madison A. Grasty, MD, MS
Kathryn Restaino, MD
Catherine M. Montgomery BSN, RN, CPN
Alee N. Pettit, BS
Matthew J. O’Connor, MD
Carol Wittlieb-Weber, MD
Jonathan B. Edelson, MD
Jonathan Edwards, MD
Justin Berger, MD, PhD
Kimberly Lin, MD
Joseph Rossano, MD
Katsuhide Maeda, MD, PhD

Divisions of Cardiothoracic Surgery and Cardiology, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA

Disclosure statement

CDM, MJO, CWW, JBE, KYL, MAG, ANP, KR: no relevant financial disclosures

JJE: Supported by NIH K08HL159311

JHB: Supported by NIH K12HD043245
JR: Consultant for Bayer, Merck, Bristol Myers Squibb, AskBio

KM: Surgical Consultant for Berlin Heart, Abbott Laboratories, PECA Labs

Funding statement

Internally funded study

Corresponding Author:

Constantine D. Mavroudis, MD, MSc, MTR
Division of Cardiothoracic Surgery, Children’s Hospital of Philadelphia
3401 Civic Center Blvd, Suite M875
Philadelphia, PA, 19104, USA
mavroudisc@chop.edu
(215) 590-2708

Glossary of Abbreviations

BiVAD: biventricular assist device
ECMO: extracorporeal membrane oxygenation
HM3: Heartmate 3
LVAD: left ventricular assist device
PTFE: polytetrafluoroethylene
RVAD: right ventricular assist device
Keywords: congenital heart disease; heart failure; ventricular assist device; bridge to transplant

Central Picture Legend
Illustration depicting Heartmate 3 RVAD cannulation technique in a small patient. Note the interposition graft between RVAD pump inflow and the right atrium, the inferior position of the RVAD pump, the transposed great vessels, and pulmonary valve replacement.

Central Message
Intracorporeal RVAD placement in a young patient can be facilitated through the use of atrial cannulation, pre-pump interposition graft, and pumphead positioning along the diaphragm.

Perspective Statement
Optimal cannulation techniques for durable RVAD in smaller patients are unknown. The use of atrial cannulation, pre-pump interposition graft, and positioning the pump inferiorly along the diaphragm avoids many of the anatomical challenges of RVAD placement in patients with small intrathoracic cavities.

Abbreviated Legend for Central Picture
Novel intracorporeal RVAD cannulation technique in a small patient
Introduction

Controversy exists regarding optimal device selection and long-term strategy for biventricular support in children and small adults. Use of intracorporeal devices such as the Heartmate 3 (HM3, Heartmate 3, Abbott Laboratories) for both left ventricular assist device (LVAD) and right ventricular assist device (RVAD) can facilitate home discharge, but HM3 RVAD implant is limited by cannulation location, flow rates, and intrathoracic cavity space. Right atrial cannulation technique on its lateral wall has been performed, but can be complicated by inflow obstruction from tricuspid valve leaflets and chronic right lung compression with resultant atelectasis or pulmonary vein compression. To obviate these challenges, we employed a novel implant technique that positions the HM3 RVAD pump away from these structures while maintaining optimal inflow.

Case report

Per institutional protocol, retrospective studies of fewer than five patients are exempt from IRB review. Therefore, this study was exempt from IRB approval and individual consent. We present a case of intracorporeal biventricular assist device (BiVAD, HM3) in a nine-year-old, 38kg (BSA 1.4m²) patient. The patient has a history of dextro-transposition of the great vessels, status post neonatal arterial switch, who presented with syncopal episodes with exercise, ST segment changes, and elevated troponin levels. Cardiac catheterization demonstrated patent coronary arteries. She progressed to shock and underwent urgent veno-arterial extracorporeal membrane oxygenation (ECMO) cannulation for presumed myocarditis. When ventricular function did not improve after 13 days of ECMO support with septostomy for ventricular unloading, she underwent HM3 LVAD, ASD closure and temporary RVAD (Centrimag, Abbott Laboratories).
She could not be weaned from her temporary RVAD after 20 days of mechanical support and was taken for durable RVAD placement (HM3) and pulmonary valve replacement (19mm Inspiris bioprosthesis (Edwards Life Sciences, Irvine, CA, USA)) for severe pulmonary insufficiency. This procedure was performed on cardiopulmonary bypass without aortic cross clamping. In order to accommodate a pump without right lung compression, a pocket was created for the HM3 pump between the posterior sheath of rectus abdominus muscle and the right diaphragm under the rib cage. A ringed 20mm polytetrafluoroethylene graft (Gore, Flagstaff, AZ, USA) was sewn to the right atrial wall and was connected to the HM3 inflow (Figure 1, Figure 2). The outflow was then sewn to the pulmonary artery. RVAD RPM were set approximately 75% that of LVAD (4300 and 5600) and to maintain right atrial pressure between 7-8mmHg and left atrial pressure of approximately 10mmHg. On surveillance catheterization, no further changes were made to VAD settings and there were no gradients noted to suggest any cardiac chamber compression or obstruction. She was extubated on postoperative day six. She was able to be discharged home 62 days following RVAD placement and continues to do well awaiting cardiac transplantation.

Discussion

We demonstrate a novel method of intracorporeal RVAD placement that can be used in children or small adults to allow for discharge while awaiting cardiac transplantation. By positioning the VAD pump away from the heart and right lung, this technique avoids tricuspid valve leaflet interference or pulmonary compression that can complicate RVAD placement in smaller patients. This technique leverages surgical methods similar to those used with the Heartmate 2 and graft extension techniques that are used in patients with small ventricular cavities. While the
concept of using an interposition graft to distance the pumphead from the heart has been described, to our knowledge this is the first time graft extension and chest wall fixation has been performed in an RVAD. Positioning the pump away from the heart has advantages, including:

- eliminating the need to alter pump inflow by having the pump sit more shallowly;
- avoiding inflow malposition and the potential for tricuspid valve dysfunction or valvectomy and
- minimizing risk of dynamic right ventricular outflow track obstruction. Avoiding tricuspid valvectomy is important, as right ventricular contraction can cause large v waves that can increase venous congestion and end-organ damage. By positioning the pump away from the hilum, there may be less atelectasis, less interference with right lung mechanics, and there may be less risk of right phrenic nerve injury at the time of transplantation that has been described.

Technical points to consider include properly securing the PTFE graft to pump inflow (zip ties), and securing the pump head to the rib to prevent malpositioning. The patient has been maintained on standard VAD anticoagulation without thrombotic complications. Optimal strategies for right ventricular support in children and small adults remain incompletely understood. This strategy overcomes several issues encountered in RVAD placement in smaller patients, and may prove beneficial in select patients to facilitate home discharge and rehabilitation.

Figure Legend

Figure 1: Illustration depicting Heartmate 3 RVAD cannulation technique in a small patient. Note the interposition graft between RVAD pump inflow and the right atrium, the inferior position of the RVAD pump, the transposed great vessels, and pulmonary valve replacement.
Figure 2: Left panel: anteroposterior chest radiograph demonstrating the positions of the RVAD and LVAD. Right panel: three-dimensional reconstruction of a computed tomography scan demonstrating placement of ventricular assist devices. Note the inferior position of the RVAD pumphead and the interposition graft between the pumphead and right atrium.

Acknowledgement Illustrations were created for this article by Eo Trueblood and Stream Studios, Philadelphia, PA, USA.

References

