Thoracoscopic S1+2 and S6 bisegmentectomy with 3D imaging simulation to manage an advanced interlobar tumor

Chia-Chi Liu, MD, Ya-Fu Cheng, MD, Chang-Lun Huang, MD, Bing-Yen Wang, MD, PhD

PII: S2666-2507(23)00404-2
DOI: https://doi.org/10.1016/j.xjtc.2023.10.024
Reference: XJTC 1553

To appear in: JTCVS Techniques

Received Date: 30 August 2023
Revised Date: 25 October 2023
Accepted Date: 30 October 2023

Please cite this article as: Liu CC, Cheng YF, Huang CL, Wang BY, Thoracoscopic S1+2 and S6 bisegmentectomy with 3D imaging simulation to manage an advanced interlobar tumor, JTCVS Techniques (2023), doi: https://doi.org/10.1016/j.xjtc.2023.10.024.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Title:

Thoracoscopic S1+2 and S6 bisegmentectomy with 3D imaging simulation to manage an advanced interlobar tumor

Chia-Chi Liu¹, MD; Ya-Fu Cheng¹, MD; Chang-Lun Huang¹, MD; Bing-Yen Wang¹,², MD, PhD

¹. Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
². Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan

Disclosure statement:

We confirm that we had freedom of investigation and full control of the design of the study, methods used, outcome parameters and results, analysis of data, and production of the written report.

COI: None

Funding Statement:

This research received no external funding.
Correspondence to:

Bing-Yen Wang, MD, PhD
Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital
No. 135 Nanxiao St., Changhua City, Changhua County 500, Taiwan
Phone and Fax : 886-(4)-7238595
Email: 156283@cch.org.tw

Article Word Count: 750

Glossary of Abbreviations:

CT = computed tomography
NSCLC = non-small cell lung cancer
VATS = Video-assisted thoracic surgery

Central Message:

A case with an interlobar tumor was diagnosed with lung adenocarcinoma. We performed bisegmentectomy of S1+2 and S6 instead of pneumonectomy to preserve the volume and enhance quality of life.

Central Picture Legend:

Bisegmentectomy of left S1+2 and S6 for interlobar tumor under preoperative 3D simulation.
Introduction

In 2002, Li et al reported that video-assisted thoracic surgery (VATS) is valuable for treatment of non-small cell lung cancer (NSCLC).1 Lobectomy is the standard lung cancer treatment, with thoracoscopic lobectomy being safe and advantageous. The Japan Clinical Oncology Group trial (JCOG0802) compared thoracoscopic lobectomy and segmentectomy for clinical stage IA NSCLC and found segmentectomy to be the preferred approach.2 Based on the general criteria in JCOG0802 trial, our selection of these patients for segmentectomy are an early-stage NSCLC (tumor size \leq 2cm, negative nodal metastasis) located in the peripheral third of lung parenchyma or a tumor measuring 2-3cm with consolidation-to-tumor ratio <0.5. We describe a case of lung adenocarcinoma where a tumor invaded the left upper lobe from the left lower lobe across the major fissure. The tumor in this case was >3cm in size and does not meet the standard criteria of segmentectomy. However, due to the special location of the tumor involving two lobes of the left lung, a bilobectomy (on the left, pneumonectomy) would be considered as standard procedure. Therefore, to retain more lung volume for the patient, we considered bisegmentectomy to anatomically resect this tumor.

This case report in our institute (Changhua Christian Hospital, Changhua, Taiwan) was approved by our institutional review board (IRB-230503) on 2023-05-19; patient consent was waived.
Case presentation

A 52-year-old symptomless woman had no smoking history but a family history of lung adenocarcinoma in her father. A routine check found a 3.7cm mass on chest computed tomography (CT) with left hilar lymph node enlargement. The mass was mostly in S6 but extended beyond the major fissure, invading S1+2 segment (Figure 1-A). She had various assessments confirming surgery suitability, including lung function tests, abdominal sonography, brain magnetic resonance imaging, and whole-body bone scans. The clinical stage was cT2aN1M0. To plan surgery, 3D reconstruction of her left lung and its vessels using commercial software (Ziostation2, Ziosoft, Tokyo, Japan) was done based on CT images (Figure 1-B).

Surgical technique

Under general anaesthesia, the patient had a double-lumen endotracheal tube for one-lung ventilation. Positioned on the right side, a 4cm single incision was made in the 5th intercostal space for VATS. Using ultrasonic scalpel, the mediastinal and hilar pleura were incised, and subcarinal, aortopulmonary window, and hilar lymph nodes were dissected.

Thoracoscopic imaging revealed the complete major fissure and the tumor’s connection between upper and lower lobes. The procedure is demonstrated in the Video, and the postoperative view of the hilum, compared with the 3D image, can be seen in Figure 2.
The length of the procedure was 3 hours and 10 minutes, with minimal blood loss of 10 ml. The chest tube was removed on postoperative day 4, and the patient was discharged the following day. Pathological analysis revealed invasive non-mucinous adenocarcinoma of the tumor type with one interlobar lymph node metastasis (pT2bN1). The tumor in S6 measured 3.2*2.7*1.7 cm in size and was located 0.5 cm from the parenchyma margin. The tumor in S1+2 measured 3.1*1.7*1.4 cm in size and was located 2 cm from the bronchial margin and less than 0.1 cm beneath the pleura. There was no involvement of the bronchus and no invasion into the pulmonary arteries or veins observed.

Comments

Minimally invasive thoracic surgery is favored for early lung cancer due to technological advancements. Thoracoscopic lobectomy has favorable outcomes for locally advanced lung cancer\(^3\),\(^4\), but segmentectomy's efficacy for advanced lung tumors remains uncertain, especially interlobar or intersegmental cases.

Since both portions of the tumor in upper and lower lobes met the standard criteria for lobectomy, and the remaining lung volume in the segments 3-5 was inadequate, we decided to deviate from the standard practice to preserve lung volume as much as possible.

Consequently, the option of lower lobectomy + LUL segmentectomy was not considered favorable.
We report a challenging case of a large tumor between upper and lower lung lobes. Preoperative methods, like CT-guided marking, aid visualization. Preoperative 3D imaging not only provides a clear view of the tumor's appearance, location, and its margin to the pleura but also assists the surgeon in simulating the identification of major vessels and bronchi within specific segments. In this unique case, 3D imaging help us to clarify the portions of tumor in upper and lower lobes, allowing us to determine which lobe was primarily affected by the tumor. This technique can lead to a more accurate resection and reduced operative time.

A single-port thoracoscopic left S1+2 and S6 bisegmentectomy, using preoperative 3D imaging for precision, led to a satisfactory outcome with a 5-day hospital stay.

References:

Figure 1: (A) A preoperative chest computed tomography showed a 3.7*2.8 cm interlobar lung mass between the apicoposterior (S1+2) and superior (S6) segments. The black arrow indicates an incomplete fissure. The white arrow indicates the bronchus to S6. (B) Three-dimensional reconstruction image of the interlobar lung lesion (white arrow) from the preoperative chest computed tomography.

Figure 2: (A) The posterior view of hilum after division. The white dotted arrows indicate the stumps of A6 and B6. The white solid arrows indicate the stumps of A1+2 a, A1+2 b, A1+2 c, and B1+2. (B) The three-dimensional reconstruction of arteries and bronchus from preoperative CT for simulation. (C) The anterior view of hilum after division. The dotted arrow indicates the stump of V1+2 a+b. The solid arrow indicates the stump of A1+2 a. (D) The three-dimensional reconstruction of A1+2 a, A1+2 b, and V1+2 a+b from preoperative CT for simulation.

Video: We performed single port thoracoscopic bisegmentectomy of left S6 and S1+2 for advanced interlobar lung tumor. The division sequence was V6, A6, B6, A1+2, B1+2, then V1+2. Following the demarcation line established by the inflation and deflation method, the S6 and S1+2 segments were meticulously divided using a stapler.