Journal Pre-proof

Mitral Valve Re-Repair after Failed Repair with Artificial Chordae

Annalisa Bernabei, MD, Daniel J.P. Burns, MD, M.Phil, Kevin Hodges, MD, Kenneth McCurry, MD, A. Marc Gillinov, MD

PII: S2666-2507(23)00397-8
DOI: https://doi.org/10.1016/j.xjtc.2023.10.017
Reference: XJTC 1546

To appear in: JTCVS Techniques

Received Date: 28 August 2023
Revised Date: 29 September 2023
Accepted Date: 10 October 2023

Please cite this article as: Bernabei A, Burns DJP, Hodges K, McCurry K, Gillinov AM, Mitral Valve Re-Repair after Failed Repair with Artificial Chordae, JTCVS Techniques (2023), doi: https://doi.org/10.1016/j.xjtc.2023.10.017.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Mitral Valve Re-Repair after Failed Repair with Artificial Chordae

Annalisa Bernabei, MD,1 Daniel J.P. Burns, MD, M.Phil.,1 Kevin Hodges, MD,1 Kenneth McCurry, MD,1 A. Marc Gillinov, MD1

1 Department of Thoracic and Cardiovascular Surgery; Cleveland Clinic, Cleveland (OH)

Disclosures: Dr. Gillinov serves as a consultant to Edwards Lifesciences, Medtronic, Abbott, ClearFlow, Artivion, AtriCure, and Johnson and Johnson

Funding: Funded by the Judith Dion Pyle Chair in Heart Valve Research.

Patient consent waived (IRB#23-844, approved on 08/18/2023)

Presented at AATS Mitral Conclave, New York City (NY), 4-5th May 2023

Corresponding author:

A. Marc Gillinov, M.D.

Department of Thoracic and Cardiovascular Surgery

Cleveland Clinic

9500 Euclid Avenue

Cleveland, OH 44195

Phone: (216) 445-8841

Fax: (216) 636-9463

Email: gillinom@ccf.org

Word count: 748
VENTRICULAR REMODELING MAY CAUSE CHORDAL PSEUDO-ELONGATION AND RECURRENT LEAFLET PROLAPSE.
CENTRAL MESSAGE

Mitral re-repair is feasible with excellent mid-term results in the rare instance of early recurrent posterior leaflet prolapse due to neo-chordal pseudo-elongation caused by ventricular remodeling.
Leaflet resection and creation of artificial chordae are equally effective for mitral valve repair caused by degenerative posterior leaflet prolapse. However, failure modes differ between the two approaches\textsuperscript{1,2}. Ventricular remodeling - changes in left ventricular geometry - may cause recurrent prolapse after initial successful mitral valve repair with artificial chordae. This study aims to determine the likelihood of mitral valve re-repair in patients with severe mitral regurgitation due to recurrent prolapse caused by ventricular remodeling after posterior leaflet repair with artificial chordae.

**METHODS**

From 01/01/2008 to 01/31/2023, 406 patients underwent reoperation for mitral valve repair failure at Cleveland Clinic. Among them, 11 patients presented with moderately severe or severe mitral regurgitation caused by recurrent prolapse after initial successful posterior leaflet repair with artificial chordae and annuloplasty. Clinical data were retrieved from the prospective Cardiovascular Information Registry, with additional information extracted from medical records and follow-up surveys. The Institutional Review Board (IRB) of the Cleveland Clinic approved the study protocol and publication of data (IRB\#23-844, approved on 08/18/2023). The IRB waived patient consent because the study was retrospective and deemed to pose a minimal risk.

**RESULTS**

Six patients were male, and the mean age was 58 ± 8.6 years. Median time between the first and reoperation was 14 months, and a decrease in left ventricular diameters was observed (Supplemental Table 1). Ten of 11 patients had mitral valve re-repair (Figure 1). Re-repair techniques included creation of new, shorter artificial chordae (n=5), posterior leaflet resection (n=5), and placement of a new annuloplasty (n=8). One patient had mitral valve replacement as that patient had both recurrent prolapse of P2 and extensive fibrosis and restriction of P1. All patients undergoing re-repair left the operating room with no or trace mitral regurgitation,
confirmed on pre-discharge echocardiogram. There was no operative mortality or major complications. At last echo follow-up (median 20 months), all patients had mild MR or less.

**DISCUSSION**

Chronic mitral regurgitation causes progressive enlargement of the left ventricle, ultimately leading to left ventricular dysfunction. Mitral valve repair induces positive reverse ventricular remodeling toward normalizing the left ventricular morphology and function.\(^3\) Left ventricular chamber remodeling occurs in stages, characterized by an initial drop of the left ventricular end-diastolic diameter (LVEDD), followed by an improvement of left ventricular end-systolic diameter (LVESD) approximately one year after surgery. This is accompanied by a decrease in ejection fraction postoperatively, followed by a gradual recovery over time.\(^3,4\) The technique used to repair the valve in the instance of posterior leaflet prolapse – either resection or creation of artificial chordae - doesn’t influence the degree of reverse remodeling.\(^4\) Ventricular remodeling has been recognized as a rare, but not negligible, cause of early mitral valve repair failure.\(^1,5\) In an enlarged ventricle, the choice of artificial chordae for a posterior leaflet repair carries an inherent risk of early recurrent mitral regurgitation due to chordal pseudo-elongation as the ventricle reduces its dimension (Figure 2). Therefore, when degenerative posterior leaflet prolapse is associated with a dilated left ventricle, carefully evaluating the mechanism of mitral regurgitation to choose the best repair technique is crucial to achieving a successful and durable repair. Given the experience reported in this study, we favor resection of the posterior leaflet in this specific scenario. If a “respect” technique is selected, we recommend creating shorter chordae to avoid recurrent prolapse in the anticipated event of pseudo-elongation due to remodeling.

In our series, leaflet resection and placement of shorter artificial chordae are equally effective in re-repair durability, with excellent mid-term outcomes. Further larger studies are needed to
characterize better the underlying mechanisms and exact ventricular segments involved in reverse remodeling.

CONCLUSIONS

Recurrent prolapse may cause mitral regurgitation in patients with a posterior chordal repair followed by left ventricular remodeling. Although uncommon, this scenario presents an excellent opportunity for a relatively straightforward re-repair of the mitral valve.
REFERENCES


LEGENDS

Figure 1: 59-year-old patient with severe degenerative mitral regurgitation. A) Four-chamber view showing preoperative P2 prolapse and LV dilatation. B) Long axis view of successful initial mitral valve repair (artificial chordae fixed to P2 + 35-mm annuloplasty band) without evidence of prolapse. C) Four-chamber view five months after initial repair showing recurrent P2 prolapse in a shrank left ventricle after reverse remodeling.

Figure 2: Recurrent mitral regurgitation due to chordal pseudo-elongation. A seemingly perfect mitral valve repair using artificial chordae in a markedly enlarged left ventricle (left). As the ventricle shrinks (right), the artificial chordae appear too long (chordal pseudo-elongation) for the remodeled left ventricle, leading to recurrent posterior leaflet prolapse.
**Supplemental Table 1**: Reverse remodeling effect on left ventricle geometry. EF = ejection fraction; LVEDD = left ventricular end-diastolic diameter; LVESD = left ventricular end-systolic diameter.

<table>
<thead>
<tr>
<th></th>
<th>Preop primary mitral repair</th>
<th>Preop reoperation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sex</td>
<td>LVEDD (cm)</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>5.8</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>5.1</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>5.7</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>5.5</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>4.7</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>6.1</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>5.2</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>4.8</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>5.2</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>5.5</td>
</tr>
</tbody>
</table>