Article Type: Surgical Technique/Case Report

Title: Robotic Repair of a Large Chronic Traumatic Diaphragmatic Hernia

Author List:
Shubham Gulati, MS¹,², M. Blair Marshall, MD³, Ealaf Shemmeri, MD, PharmD²

1. Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York
2. Division of Thoracic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
3. Division of Thoracic Surgery, Sarasota Memorial Hospital, Sarasota, Florida

Corresponding Author: Shubham Gulati

Email for Correspondence: shubham.gulati@icahn.mssm.edu

Disclosure Statement: Dr. Marshall has received honoraria and grant funding from Intuitive Inc. and honoraria from Siemens Inc. The other authors report no conflicts of interest.

Funding Statement: N/A

Article Word Count (excluding references) (Max 750): 750

Reference Count (Max 5): 5

Glossary of Abbreviations:
DH: Diaphragmatic Hernia
TDH: Traumatic Diaphragmatic Hernia
CT: Computed Tomography
POD: Post-Operative Day

Central Pictures:
A large chronic traumatic diaphragmatic hernia: CT highlights the liver in the chest.

Central Message:
Central Message: We demonstrate the technical strategies for a large traumatic diaphragmatic hernia repair involving the liver.

Main text:

Diaphragmatic hernia (DH) represents a rare potentially life-threatening condition, with traumatic diaphragmatic hernia (TDH) as a result of thoracoabdominal injury accounting for 10-30% of cases. TDHs are more rarely localized to the right side because of the protective effect of the liver. Further, patients may remain asymptomatic for a number of years and can present with nonspecific respiratory and gastrointestinal symptoms. Once diagnosed, guidelines recommend surgical repair. Laparoscopic, thoracoscopic, and combined approaches have all been described previously. The abdominal approach provides access to the retrohepatic vena cava, while the thoracic approach allows better access to pleural adhesions for decortication. While minimally invasive approaches have emerged, reports of robotic DH repair remain limited, with few cases highlighting the robotic repair of congenital DH. Two reports highlight the robotic repair of chronic TDH; however, one describes the transthoracic approach while the other describes a transabdominal approach complicated by a gastrobronesial fistula as a result of technical error during TDH repair. We present details for transabdominal robotic repair of chronic right-sided TDH with technical strategies used to avoid complications (Video 1). We planned a complete abdominal approach, but the right chest was exposed and accessible in case thoracoscopic access became necessary. During the case, we found no pleural adhesions requiring access from the chest. IRB approval was not required; the patient provided informed written consent for the use and publication of de-identified information.

A 36-year-old male with a history of a motor vehicle accident at age 18 presented to the emergency department with complaints of right-abdominal pain. A computed tomography (CT) scan demonstrated a large right-sided diaphragmatic hernia, with a significant portion of his liver, right colon, appendix, gallbladder, omentum, and associated mesentery in the chest without obstruction (Figure 1). The patient was referred to thoracic surgery. In the emergency room, the patient’s pain resolved, and he was scheduled for semi-elective robotic repair. In the operating room, the patient was placed in a right modified decubitus position with a bump under the right chest wall, ensuring access to the chest in case of an additional thoracoscopic approach. We placed four robotic ports across the mid-abdomen (Figure 2A): from right to left, this included fenestrated bipolar forceps, 30-degree camera, hook cautery, and Cadiere forceps. An assistant port was placed in the left-lower quadrant. Capnotherax was achieved with CO2 pressures of 5-8mmHg with no hemodynamic issues. We began by careful reduction of the omentum and then dissection of adhesions along the anterior rim of the diaphragmatic defect, allowing improved visualization. Eversion of the diaphragm and limited lysis of adhesions on the thoracic side was performed, providing improved mobility of the remainder of omentum and colon. The dissection allowed for atraumatic reduction of the right colon and appendix with its associated mesentery. Because of the fragility of the hepatic parenchyma, reduction of the liver was done delicately. We were able to grasp the gallbladder mesentery and reduce part of the herniated liver. However, the remainder of the liver was reduced with a Valsalva maneuver from our anesthesia colleagues.
Once the liver was returned to the anatomic position, we dissected the posterior diaphragmatic defect away from the middle hepatic vein as it went from the patient’s right to its junction with the suprahepatic inferior vena cava. A small portion of attenuated diaphragm was resected, given concern for its strength. Next, the 9cm defect was primarily repaired with figure-of-eight 0-Ethibond (Ethicon, Somerville, NJ) sutures with pledgets. The capnothorax was resolved utilizing a red rubber catheter and a second Valsalva maneuver. A 15 x 20cm reinforcing Polypropylene/Polyglycolic acid dual-sided mesh (Ventralex™ ST, Bard Davol, Warwick, RI) was added using the ProTack™ 5mm device with helical titanium tacks (Medtronic, Minneapolis, MN) via the assistant port and Vicryl (Ethicon, Somerville, NJ) sutures, based on surgeon preference and for added support. On post-operative day (POD) 1, the patient had mild pleural pain due to residual capnothorax. This was drained with a pigtail catheter to provide relief. The patient was discharged to home on POD2 and told to avoid heavy lifting for one month. Post-operative follow-up demonstrated resolution of the hernia on X-ray (Figure 2B). At 6-month surveillance screening, patient was asymptomatic and X-ray showed no recurrence.

This case provides technical strategies for a transabdominal robotic approach for the correction of a large traumatic hernia, highlighting eversion of the diaphragm and use of Valsalva maneuvers for atraumatic reduction of herniated organs. While literature is lacking on the robotic approach for correction of TDH, we demonstrate that this approach is both feasible and safe.
Figures:

Figure 1: (A) Axial, (B) sagittal, (C, D) and coronal CT images demonstrating the herniation of abdominal organs into the chest: a case of large traumatic diaphragmatic hernia. (C) Abdominal contents, including the portal vein, are herniated into the chest, and (D) the liver can be seen above and below the diaphragm.

Figure 2: (A.) Post-operative image highlighting the abdominal incisions made for port placement and instruments utilized in each port, and (B.) X-ray demonstrating resolution of the hernia.

Video 1: Comprehensive Case Video

References:


