Avoiding the Atrioventricular Node in Tricuspid Replacement: The Interatrial Septal Patch Technique

Stephen M Spindel MD¹, Reginald E Du MD¹, Jasmine Su BS², Antonio Polanco MD³, Katrina J Jiang BA⁴, Autumn P Stevenson MD¹

¹Section of Cardiothoracic Surgery, Department of Surgery, Ochsner Medical Center, New Orleans, LA
²The University of Massachusetts, Amherst, MA
³Division of Cardiac Surgery, The Johns Hopkins University, Baltimore, MD
⁴The University of Queensland Medical School, Ochsner Clinical School, New Orleans, LA

Funding Sources
The authors have no funding sources to disclose.

Acknowledgements
None.

Disclosures
The authors have no disclosures.

Word count
747

Corresponding Author
Stephen M Spindel, MD
Ochsner Medical Center, Section of Cardiothoracic Surgery
1514 Jefferson Highway, New Orleans, LA 70121, United States
Tel: 347.978.6243
Fax: 504.842.0298
Email: stephenspindel123@gmail.com
Central Picture

Interatrial septal patch technique avoids atrioventricular tissue in tricuspid replacement.

Central Message

The interatrial septal patch technique can avoid damage to the conduction tissue during tricuspid valve replacement.
Despite improvements in valvular surgery outcomes, tricuspid replacement continues to have a high in-hospital mortality of 20% and considerable morbidity, specifically the 21% pacemaker implantation rate1,2. Given the close association between the tricuspid annulus and atrioventricular node, suture placement here results in significantly higher chances of conduction dysfunction versus other valvular interventions2,3. This article describes a method that circumvents the conduction pathways during tricuspid replacement. The novel technique can be deployed for any tricuspid pathology requiring replacement and may be particularly advantageous for endocarditis patients since repair is unlikely. The subject(s) provided informed written consent for the publication of the study data. The Institutional Review Board (IRB) was not required.

Procedure

The procedure is performed through a median sternotomy or right thoracotomy. Cardiopulmonary bypass is initiated, and the surgery is undertaken on a beating or arrested heart. The right atrium is opened and if the valve is not repairable, the interatrial septal patch technique is initiated.

The purpose is to anchor the tricuspid prosthesis, simultaneously bypassing the conduction tissue (Video 1). It is accomplished by prohibiting suture placement in the tricuspid annulus between the six o’clock to ten o’clock positions, yet still anchoring the prosthesis here. This is achieved through a patch established to hold the sewing cuff sutures while avoiding the atrioventricular node.
The danger zone is marked (Figure 1), providing a 1 cm radius around the apex of the Triangle of Koch which circumvents atrioventricular nodal tissue. A bovine pericardial patch is fashioned into a 5cm x 4cm semicircle. The inferior corner of the patch is tacked to the six o’clock position of the tricuspid annulus with a 4-0 polypropylene suture. This suture remains double-armed with needles to anastomose the patch in two directions: along the tricuspid leaflets and into the interatrial septum, meeting at the ten o’clock position on the tricuspid annulus. The first suture arm anastomoses the patch to the interatrial septum in a continuous fashion, starting from six o’clock and heading posterolaterally (Figure 2). This suture line travels into the mouth of the coronary sinus, onto the lateral edge of the Tendon of Todaro, then near the medial edge of the fossa ovalis. The suture line continues anteromedially towards the ten o’clock position of the tricuspid annulus and staying 1cm to 2cm distal to the atrioventricular node. The second suture arm completes the patch anastomosis by traveling from six o’clock to ten o’clock (Supplemental 1). This suture anastomoses the patch into the tricuspid leaflets, not the tricuspid annulus. It includes the bases of half the septal leaflet and third of the anterior leaflet but avoids all the tricuspid annulus and the nearby atrioventricular nodal tissue. Both suture arms rejoin at the ten o’clock position of the annulus and are tied, completing the bovine pericardial patch anastomosis to the interatrial septum.

The prosthetic valve anchoring sutures are now placed. Pledgetted polyethylene sutures are placed clockwise from the six o’clock position to the ten o’clock position solely through the bovine pericardial patch, avoiding the tricuspid annulus deep to the patch (Supplemental 2). These sutures will anchor the prosthetic valve into a patch which gains its strength from a very
long suture line, distributing the force throughout its circumference. The remaining anchor
sutures are inserted circumferentially into the annulus as in a standard tricuspid replacement. All
sutures are passed through the sewing cuff of the prosthetic valve, the valve is lowered in place,
and the sutures are tied (Supplemental 3). The valve is tested with saline, and the right atrium is
closed.

Informed written consent was obtained to include patient information.

Discussion

Although once a not-so-common operation, tricuspid replacement has become more ubiquitous
secondary to endocarditis and the opioid epidemic. With high recidivism and poor social
support, these individuals can be challenging to treat, and that challenge is heightened when
pacemaker implantation is required. As endocarditis prevalence increases, methods to combat
the morbidity associated with tricuspid interventions should be developed.

The interatrial septal patch technique is a simple and reproducible method to minimize
atrioventricular nodal injury by adhering the tricuspid prosthesis onto a patch rather than into the
conduction tissue itself. This novel technique aims to decrease postoperative pacemaker rates
and has been applied to five endocarditis patients at this institution; none experienced
postoperative conduction disturbances.

Conclusions
Avoiding the conduction tissue during tricuspid valve replacement may potentially decrease postoperative conduction disturbances. The interatrial patch technique uses anatomical landmarks to circumvent the atrioventricular nodal area while providing a strong anchoring point to substitute for annular suture placement. The goal of this novel approach is to potentially minimize a major morbidity associated with tricuspid replacement.
References

The bovine pericardial patch is anastomosed to these landmarks.

The first arm of the suture anastomoses the patch to the interatrial septum.

The second arm of the suture completes the patch anastomosis.

Prosthetic valve anchoring sutures are placed solely through the patch from six o’clock to ten o’clock positions, avoiding the tricuspid annulus here.

The prosthetic valve is anchored to the patch, subsequently avoiding the conduction tissue.

Intraoperative video illustrating the interatrial septal patch technique to assist in decreasing the risk of atrioventricular nodal injury during tricuspid valve replacement.