Successful recovery of an anastomotic fistula in right sleeve pneumonectomy after excessive radiotherapy

Hiroyuki Ito, M.D., Takuya Nagashima, M.D., Tetsuya Isaka, M.D., Haruhiko Nakayama, M.D.

PII: S2666-2507(23)00379-6
DOI: https://doi.org/10.1016/j.xjtc.2023.10.001
Reference: XJTC 1528

To appear in: JTCVS Techniques

Received Date: 6 September 2023
Revised Date: 27 September 2023
Accepted Date: 3 October 2023

Please cite this article as: Ito H, Nagashima T, Isaka T, Nakayama H, Successful recovery of an anastomotic fistula in right sleeve pneumonectomy after excessive radiotherapy, JTCVS Techniques (2023), doi: https://doi.org/10.1016/j.xjtc.2023.10.001.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Successful recovery of an anastomotic fistula in right sleeve pneumonectomy after excessive radiotherapy

Authors: Hiroyuki Ito¹, M.D., Takuya Nagashima¹, M.D., Tetsuya Isaka¹, M.D. and Haruhiko Nakayama¹, M.D.

Affiliation: ¹Department of Thoracic Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi, Yokohama, Kanagawa 241-8515, Japan

Corresponding author: Hiroyuki Ito
2-3-2 Nakao, Asahi, Yokohama, Kanagawa 241-8515, Japan
Telephone number: +81-45-520-2222
Fax number: +81-45-520-2222
E-mail: h-ito@kcch.jp

Word count: 734
Clinical registration number: Not applicable
Conflicts of interests: None declared.
Funding: None

Central message: A case of recovery from a lethal complication of right sleeve pneumonectomy after 84.7 Gy of high-dose radiation therapy

Central Picture Legend: Anastomotic failure after 84.7 Gy radiation managed with deep intubation and nutrition
Introduction

Lung cancer surgery after high-dose radiation is sometimes performed as salvage surgery [1-3]. Fibrotic tissue changes and microvessel elimination may hinder dissection and healing, especially in the case of a bronchoplastic procedure [3]. Here, we report a case of recovery from a lethal complication of right sleeve pneumonectomy after 84.7 Gy of high-dose radiation therapy. This report was approved by the Ethics Committee of the Kanagawa Cancer Center (2023EKI-79, 28 August 2023). Written informed consent was obtained from the patient and his family member for the publication of this study data.

Case report

A 49-year-old man with progressive shortness of breath and dyspnea was referred to our hospital. Six years prior, he had been treated for c-T4N2M0 stage IIIB lung adenocarcinoma with chemotherapy and sequential proton radiotherapy at another facility. Chest computed tomography (CT) and 3-dimensional CT showed stenosis around the carina and right main bronchus (Fig. 1A and Video 1). Bronchoscopy confirmed stenosis of the lower trachea, carina, and right main bronchus, and the bronchus intermedius could not be observed (Fig. 1B). Positron emission CT showed no evidence of recurrence; %FEV1.0, 39.7%, gradually worsening from 46.1% a month
prior. A late complication of radiotherapy was suspected, and a previous facility reported that 77 Gy of proton beam (equal to 84.7 Gy of photon beam) had been delivered. The reason for this was unknown (Fig 1C). Surgical treatment with bronchoplasty was considered too difficult and risky, and airway stenting was considered first. However, placement of a Y-shaped Dumon stent was impossible because of the deformation of the carina. Long-term survival with an I-shaped stent was not expected due to unavoidable pneumonia. We explained the high risk of surgery and the high possibility of lethal complications. However, the patient preferred high-risk treatment with the possibility of long-term survival. With the permission of the cancer board, right sleeve pneumonectomy was performed instead of complex bronchoplasty. This creates only one anastomotic site, and airway management is easier if anastomotic failure occurs. To promote healing of the anastomotic site and separate the stump of the main pulmonary artery, omentopexy was performed. Surgery was successfully performed (Video 2), and the postoperative course was good until postoperative day (POD) 12. Excessive fatty sputum expectoration with high-grade fever occurred. Bronchoscopy revealed a break at the anastomotic site (Fig 2A). Based on the diagnoses of anastomotic failure and empyema, fenestration of the anterior chest wall at the shortest drainage path was performed (Fig 2B). After surgery, intubation was maintained deeper than the anastomotic site and respiration was maintained without placing the left decubitus position. Bronchoscopy revealed that the broken anastomotic site gradually recovered through gauze drainage 2–3 times a day and sufficient tube feeding (Fig 2C, Video 3). Air leakage from the anastomotic site was stopped by granulation on POD 46, and the patient was weaned off the respirator from POD 67 and discharged on foot on POD 116. The fenestration closed naturally (Fig 2D), and the patient continues to work 4 years after surgery.
Discussion

It is well known that radiation therapy causes tissue damage and increases complications, including airway stenosis, particularly at higher doses [4]. There have been no reports of bronchial anastomosis performed after excessive radiation, as in this case, and we understood the possibility that the healing mechanism would not work well. Anastomotic failure during sleeve pneumonectomy can be fatal. Airway stenting is a reliable and suitable treatment option for central airway stenosis; however, long-term survival cannot be expected due to complications such as pneumonia, dislocation, and bleeding [5]. Surgery, in this case, was very risky, and anastomotic fistula was an expected and lethal complication; however, there was a possibility of long-term survival if successful. The reasons this patient survived were as follows: pneumonia did not occur; the mediastinum, including the stump of the pulmonary artery, was covered with omentum and isolated from the empyema; and the fenestration provided good drainage from the beginning of the empyema. Granulation from the omentum was good, and the fistula could be covered and filled in a short time. In addition, the patient was relatively young, enteral nutrition was started early to maintain adequate systemic management, and cooperation with intensive care physicians enabled intubation deeper than the anastomotic break site and maintained good respiratory management.

Excessive radiation therapy can damage tissues and delay healing after surgery. This patient recovered completely. Treatment selection in this situation should be extremely cautious, and the decision should be made after a thorough discussion at a multidisciplinary level, taking the patient’s preference into account.
References


Figure and Video legends

Figure 1: 3-dimensional computed tomography showing severe stenosis around the lower trachea, carina, and right main bronchus. (A) Bronchoscopic findings showing stenosis of the lower trachea, and the damage mainly in the right side (B). Radiotherapy map showing 77 Gy of proton beam had been mainly delivered to the right pulmonary hilum (C)

Figure 2: Bronchoscopic findings at POD 12 showing anastomotic site break, especially on the right side (A). CT showed the shortest drainage path from break site was anterior chest wall (B). On POD 46, the fistula is covered with granulation (C). A year after surgery, fenestration of the anterior chest wall is almost filled and the patient can take a shower (D).

Videos: 3 (total playback time: 20 min)

Video 1: Chest computed tomography and 3-dimensional computed tomography showing atelectasis of the right upper lobe and stenosis around the lower trachea, carina, and right main bronchus.

Video 2: Right sleeve pneumonectomy using the posterolateral approach. The hilum was stony and hard, and the tension at the anastomotic site was extremely weakened. The cut length was approximately 3 cm, and no excessive tension was noted during the operation. We released the area around the anterior wall of the left main bronchus, but not the upper trachea. Omentopexy was added to increase anastomotic healing and protection. The operative time was 9 h 33 min, and blood loss was 410 g.

Video 3: Bronchoscopy on POD 32 revealing a deteriorated broken anastomotic site; however, it was gradually repaired and covered with granulation. A fistula could not be seen on POD 64.