Simplifying the Autograft and Homograft: The Inverted-Graft Mattress Technique

Stephen M Spindel MD¹, Antonio Polanco MD², Jasmine Su BS³, Reginald E Du MD¹, Autumn P Stevenson MD¹

¹Section of Cardiothoracic Surgery, Department of Surgery, Ochsner Medical Center, New Orleans, LA
²Division of Cardiac Surgery, The Johns Hopkins University, Baltimore, MD
³The University of Massachusetts, Amherst, MA

The authors have no disclosures.

This report has received no funding.

IRB approval was not required.

Informed written consent was obtained to include patient information in this video.

Corresponding Author:
Stephen M Spindel, MD
Ochsner Medical Center, Section of Cardiothoracic Surgery
1514 Jefferson Highway, New Orleans, LA 70121, United States
Tel: 347.978.6243
Fax: 504.842.0298
Email: stephenspindel123@gmail.com
Central Picture

The inverted-graft mattress technique for simplifying autograft and homograft surgery.

Central Message

The inverted-graft mattress technique demonstrated in this video simplifies the graft-LVOT anastomosis segment of pulmonary autograft and aortic homograft root replacements.
Evidence suggests pulmonary autograft and aortic homograft have good long-term survival, excellent hemodynamics, and may offer improved outcomes compared to biological and mechanical prostheses. However, pulmonary autograft and aortic homograft represent <0.1% of aortic valve replacements (AVRs) with most of these performed at high-volume centers. Its limited use can be attributed to the technical complexity, potentially increased operative risk, and lack of surgeon experience. During the left ventricular outflow tract (LVOT) anastomosis, the pliant pulmonary autograft and aortic homograft, hereon referred to as the “graft”, obstruct visualization of suture placement. We demonstrate an adoptable framework, the inverted-graft mattress technique, that transforms the challenging LVOT anastomosis into one familiar with most cardiac surgeons. IRB approval was not required. Informed written consent was obtained to include patient information in this video.

We envision the graft-LVOT anastomosis as a standard aortic valve replacement with a biological or mechanical prosthesis (Figure 1). Video 1 illustrates the steps providing excellent exposure of the graft annulus, regarding it as a sewing cuff akin to a prosthetic valve. First, invert the graft, bringing the leaflets and annulus to the outside. Mark the annulus, creating a “safe zone” for suture placement. The result is a configuration comparable to the sewing cuff of a prosthetic valve.

Suture placement mirrors a standard AVR with first placing the LVOT sutures, then placing these into the sewing cuff. The framework for the “sewing cuff” is created by the three commissural sutures being placed first through the graft for suspension. The remaining LVOT
sutures are now passed through the graft “sewing cuff.” The graft is parachuted and the sutures tied. Considerations include alternating colored polyethylene sutures in the LVOT for improved organization and marking the left coronary ostium in the aortic homograft for assistance with graft orientation. Importantly, note the pulmonary autograft does not sit within the LVOT and its annulus lacks basal support. Therefore, one should strongly consider using an external ring annuloplasty (prosthetic graft or felt) in the autograft to prevent annular dilatation.

This standardized AVR framework simplifies the graft-LVOT anastomosis. We believe this technique offers improved organization and enhances surgical precision, making pulmonary autograft and aortic homograft root replacement a more accessible option for all cardiac surgeons.
References

Figure 1

Envisioning the LVOT anastomosis with the autograft or homograft as a standard bioprosthetic aortic valve replacement.

Video 1

Intraoperative video illustrating the inverted-graft mattress technique to simplify a pulmonary autograft or aortic homograft root replacement.