Minimally Invasive, Robotic-Assisted Approach for Mitral Valve Replacement in a Pediatric Congenital Patient with Severe Mitral Regurgitation

Madonna E. Lee, MD, Andrea Amabile, MD, Michael LaLonde, MHA PA-C, Markus Krane, MD, Arnar Geirsson, MD, Peter J. Gruber, MD PhD

PII: S2666-2507(23)00365-6
DOI: https://doi.org/10.1016/j.xjtc.2023.09.019
Reference: XJTC 1514

To appear in: JTCVS Techniques

Received Date: 16 June 2023
Revised Date: 10 September 2023
Accepted Date: 16 September 2023

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Minimally Invasive, Robotic-Assisted Approach for Mitral Valve Replacement
in a Pediatric Congenital Patient with Severe Mitral Regurgitation

Madonna E. Lee MD¹*, Andrea Amabile MD¹*, Michael LaLonde MHA PA-C²,
Markus Krane MD¹,², Arnar Geirsson MD¹,§, Peter J. Gruber MD PhD¹,§

1. Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New
 Haven, CT
2. Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich,
 Technical University of Munich, Munich, Germany

*These Authors contributed equally.

Presented at the 2023 Mitral Conclave in New York City, NY

$Corresponding Authors

Dr. Arnar Geirsson, MD
Professor of Surgery
Division of Cardiac Surgery
Yale School of Medicine
330 Cedar Street, New Haven, CT
arnar.geirsson@gmail.com

Dr. Peter J. Gruber, MD, PhD
Professor of Surgery
Division of Pediatric Cardiac Surgery
Yale School of Medicine
330 Cedar Street, New Haven, CT
peter.gruber@yale.edu

Disclosures Statement
Dr. Amabile receives consulting fees from JOMDD/Sanamedi. Michael LaLonde receives consulting fees from Edwards Lifesciences and Intuitive Surgical. Dr. Krane is a physician proctor and a member of the medical advisory board for JOMDD/Sanamedi, a physician proctor for Peter Duschek, is a medical consultant for EVOTEC and Moderna and has received speakers’ honoraria from Medtronic and Terumo. Dr. Geirsson receives consulting fees for being a member of the Medtronic Strategic Surgical Advisory Board and from Edwards Lifesciences.

Funding Statement

None.

Central Picture Legend

Robotic mitral valve replacement in a pediatric congenital patient: final cosmetic result.

Central Message

This case video highlights technical details of a mitral valve replacement in a pediatric congenital patient with rheumatic heart disease using a minimally invasive robotic approach.

Case Video Word Count: 342/350
A 7-year-old, 20 kg female with history of rheumatic heart disease was admitted for significant shortness of breath (IRB #2000032417, 3/4/2023; informed written consent was obtained for publication of study data). On echocardiography, the patient had severe mitral regurgitation, significant left atrial dilation, and preserved left ventricular function. She was unable to tolerate an oral diuretic regimen. Thus, the recommendation was to proceed with surgery. There was no absolute contraindication for a robotic approach, so after discussion with the family, the decision was made to proceed to the OR for possible valve repair versus replacement. The patient was brought to the operating room and general anesthesia was induced. The right neck vessels were exposed for peripheral cannulation, using a surgical cutdown and being careful to avoid injury of adjacent structures within the carotid sheath (Video 1). A 19-French cannula was inserted into the right internal jugular vein, and a 14-French arterial cannula placed in the right carotid artery. One camera port, two robotic arm ports, and one retractor port were inserted into right intercostal spaces. The pericardium was entered. A cardioplegia needle was placed in the ascending aorta, and the transthoracic aortic cross-clamp was applied. Prompt cardioplegic arrest was obtained, then the left atrium was accessed through the interatrial groove. Utilization of DaVinci Xi Long Tip Forceps as a retractor, due to the narrow antero/posterior diameter, provided excellent exposure of the mitral valve, demonstrating rheumatic changes (see Figure 1a). The valve was severely dysplastic and deemed not repairable by the surgeon’s judgement. Due to the patient’s admission for heart failure, a prolonged bypass time for an attempt at repair with a questionable result was also not advisable. Thus, a mechanical mitral valve replacement was performed with a 25 mm St. Jude Medical mechanical prosthesis. After placement of Ticron valve sutures, using the Cor-knot device, the sewing ring was secured in place to the mitral valve annulus. Total
bypass and crossclamp times were 167 and 88 minutes, respectively. Post-operative transesophageal echocardiography demonstrated a functioning and well-seated mitral valve, with no regurgitation and good leaflet motion. Surgical incisions demonstrated an improved cosmetic result (see Figure 1b).

Post-operatively, the patient had an unremarkable course. She was extubated on postoperative day (POD) 1. For anticoagulation, coumadin was started with heparin bridge. She was discharged on POD 9 with transthoracic echocardiography demonstrating properly functioning mechanical mitral valve, with no pericardial effusion. At three month follow-up, this patient was still doing well with good function of the mechanical valve.

In conclusion, using a minimally invasive robotic approach with neck cannulation is feasible in smaller patients and should be considered when treating pediatric congenital mitral valve disease.
References

Figure 1.

(A) Intraoperative surgical view of the rheumatic mitral valve demonstrating thickened anterior leaflet; (B) postoperative incisions showing port placement with the largest being 3 cm.

Video 1. Narrated case video.