A novel approach for the repair of left subclavian artery aneurysm

Jayakumar T K, MCh, Veena Vasudev, MCh

PII: S2666-2507(23)00355-3
DOI: https://doi.org/10.1016/j.xjtc.2023.09.012
Reference: XJTC 1504

To appear in: JTCVS Techniques

Received Date: 14 June 2023
Revised Date: 6 September 2023
Accepted Date: 9 September 2023

Please cite this article as: T K J, Vasudev V, A novel approach for the repair of left subclavian artery aneurysm, JTCVS Techniques (2023), doi: https://doi.org/10.1016/j.xjtc.2023.09.012.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
A novel approach for the repair of left subclavian artery aneurysm

Jayakumar T K, MCh Cardiovascular & Thoracic surgery and Veena Vasudev, MCh

Cardiovascular & Thoracic surgery

Department of Cardiovascular and Thoracic Surgery, Government Medical College, Kottayam, India

Conflicts of Interest: None

Funding: None

Manuscript Word Count: 837

Contact Information:

Dr. Jayakumar T K
Head, Department of Cardiovascular and Thoracic Surgery,
Government Medical College,
Kottayam, India
Email: cvtsmck@gmail.com

Abbreviations

LSCA: Left subclavian artery aneurysms
Central Message
Elective repair of the LSCA aneurysm through left posterolateral thoracotomy and first rib excision provides optimal access to the entire length of the subclavian artery through a single incision.

Central Picture Legend
Preoperative computed tomographic 3D reconstruction showing LSCA aneurysm

ABSTRACT
Left subclavian artery aneurysms (LSCA) are extremely rare, and here, we report one such case in a 36-year-old female with Takayasu arteritis. Elective repair of the LSCA aneurysm was done by entering the thorax through the 3rd intercostal space via left posterolateral thoracotomy. The first rib was excised to gain exposure to the full length of the aneurysm and to get the adequate length of normal vessel distally for control. Our new technique provides optimal access to the entire length of the subclavian artery through a single incision, which is impossible with the conventional approach.

Subclavian artery aneurysms, particularly LSCA aneurysms, are exceptionally rare, with fewer than 400 cases reported worldwide\(^1\). Conventional approaches involve left thoracotomy or sternotomy, occasionally with infraclavicular access. We present a novel approach - a single high
left thoracotomy and excision of the first rib - for accessing LSCA aneurysms. We highlight its advantages over traditional methods. Patient consent was obtained for publication of study data, and institutional review board approval was waived for this case report.

CASE REPORT

A 36-year-old female with Takayasu arteritis presented with a right-sided lower motor neurone (LMN) facial palsy. She also had claudication of the left upper limb for four months, for which she did not seek treatment earlier. On physical examination, arterial pulses in the left upper limb were not palpable; however, the limb was not ischemic. Arterial Doppler of the left upper limb showed monophasic flow, suggestive of proximal obstruction. Computed tomography (CT) angiogram demonstrated a saccular aneurysm arising from LSCA that measured 4.2 × 3.4 cm (TR x AP) near the origin of the left subclavian artery with an eccentric thrombus (Figure 1). Another small aneurysm (0.6 x0.5cm) was also present in the distal right common iliac artery (CIA). All other branches of the aorta were normal. CT and MRI of the brain were also normal.

Elective repair of the LSCA aneurysm was done by entering the thorax through the 3rd intercostal space utilising a left posterolateral thoracotomy. The aneurysm was 4X 4 cm in size and positioned 3 cm from the origin of the LSCA (Figure 1). The apex of the left lung adhered to the aneurysm, hindering retraction. We stapled and divided this portion to improve exposure to the aneurysm. After opening the mediastinal pleura, proximal control of LSCA was obtained. The course of the left subclavian vein entering the thorax and joining brachiocephalic vien was traced. The left phrenic nerve and vagus nerve were identified and preserved. The first rib was exposed by incising the parietal pleura and went around the rib on either side of the aneurysm without injuring it. The first rib was divided, taking care not to injure the vessels/nerve/aneurysm
by staying close to the rib. After resecting the first rib, the distal portion of the left subclavian artery and the proximal axillary artery was well visualized for looping. Branches of LSCA arising from the aneurysm were identified and ligated (Video 1). This new approach provided proximal and distal vascular controls, and the aneurysm was excised (Figure 2). LSCA was repaired with a 7mm Dacron interposition graft. Post-operatively, the patient had no neurological deficits or ischemic symptoms in the left arm and had palpable radial and ulnar pulses at two weeks follow-up.

DISCUSSION

The preferred treatment for SCA aneurysms involves resection and reconstruction using a prosthetic vascular graft. Optimal exposure of the SCA is crucial for effective aneurysm management. Surgical access to the SCA depends on aneurysm location and extent as revealed by CT scans. In this case, the large aneurysm was situated near the LSCA origin. Due to the intact first rib, distal SCA control was challenging. With the conventional approach, the problem here needs a large incision, like an open book incision or a staged procedure. The commonly used conventional approaches for proximal SCA corrections are (1) Median sternotomy (2) Median sternotomy + left supraclavicular extension (Aneurysm in intrathoracic space and close to the common carotid and vertebral arteries) (3) Modified supraclavicular approach (Extrathoracic location) (4) Infraclavicular approach (For carotid to subclavian bypass of aneurysm) (5) Left thoracotomy + supraclavicular approach (Intrathoracic subclavian artery aneurysms) (6) 2-staged approach (Multiple supra-aortic artery aneurysms) (7) Modified trapdoor + thoracotomy (Intrathoracic subclavian artery aneurysms) (8) Left posterolateral thoracotomy (Left hemithorax). But none of these techniques provides access to the entire length of the LSCA through a single incision.
We introduced a novel technique in our case: a single high left thoracotomy incision with first left rib division, providing extensive LSCA exposure. This innovative approach enhances aneurysm visualization and facilitates proximal and distal SCA clamping for effective repair. This technique also minimizes technical mishaps, reducing blood loss, morbidity, and mortality risks. Traditional methods display greater complexity, resulting in inadvertent aneurysm entry in 50% of cases and subsequent severe complications. Our approach, a single high left thoracotomy with first rib division, not only grants complete access to the subclavian artery but also eliminates the need for infraclavicular incisions seen in conventional procedures. Its feasibility diminishes if the aneurysm extends to the axillary artery's initial or distal segments.

REFERENCES

Figure Legends

Figure 1. Three-dimensional reconstruction from computed tomography images to show LSCA aneurysm (A). Computed tomography depicting the LSCA aneurysm (B)

Figure 2. Intraoperative view of (A) the aneurysm with LSCA looped proximally and distally (B) proximal & distal left subclavian artery stumps after removal of the aneurysm (C) Excised SCA aneurysm with part of lung apex adherent to it.

Video Legend

Video 1. Operative steps for the repair of left subclavian artery aneurysm. Initially, the first rib was exposed by incising the parietal pleura and went around the rib on either side of the aneurysm without injuring it. Then, the first rib was divided, and the distal portion of the left subclavian artery and the proximal axillary artery was well visualized for looping. Branches of LSCA arising from the aneurysm were identified and ligated. The aneurysm was excised, and LSCA was repaired with a 7mm Dacron interposition graft.