Totally Endoscopic, Robotic-Assisted Mitral Valve Repair after Transcatheter Aortic Valve Replacement

Andrea Amabile, MD, Michael LaLonde, MHA PA-C, Soraya Fereydooni, BS, Cheryl Zogg, PhD MSPH MHS, Alyssa Morrison, BS, Christina Waldron, BS, Syed Usman Bin Mahmood, MBBS, Arnar Geirsson, MD, Markus Krane, MD

PII: S2666-2507(23)00308-5
DOI: https://doi.org/10.1016/j.xjtc.2023.08.027
Reference: XJTC 1496

To appear in: JTCVS Techniques

Received Date: 16 June 2023
Revised Date: 20 August 2023
Accepted Date: 31 August 2023

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Totally Endoscopic, Robotic-Assisted Mitral Valve Repair after Transcatheter Aortic Valve Replacement

Andrea Amabile MD1, Michael LaLonde MHA PA-C1, Soraya Fereydooni BS1, Cheryl Zogg PhD MSPH MHS1, Alyssa Morrison BS1, Christina Waldron BS1, Syed Usman Bin Mahmood MBBS1, Arnar Geirsson MD1,2,§, Markus Krane MD1,2,§

1. Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine
2. Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, Technical University of Munich, Munich, Germany

Presented at the 2023 Mitral Conclave in New York City, NY

§ Corresponding Authors

Dr. Arnar Geirsson, MD Dr. Markus Krane
Professor of Surgery Associate Professor of Surgery
Division of Cardiac Surgery Division of Pediatric Cardiac Surgery
Yale School of Medicine Yale School of Medicine
330 Cedar Street, New Haven, CT 330 Cedar Street, New Haven, CT
arnar.geirsson@gmail.com markus.krane@yale.edu
Disclosures Statement

Dr. Amabile receives consulting fees from JOMDD/Sanamedi. Michael LaLonde receives consulting fees from Edwards Lifesciences and Intuitive Surgical. Dr. Krane is a physician proctor and a member of the medical advisory board for JOMDD/Sanamedi, a physician proctor for Peter Duschek, is a medical consultant for EVOTEC and Moderna and has received speakers’ honoraria from Medtronic and Terumo. Dr. Geirsson receives consulting fees for being a member of the Medtronic Strategic Surgical Advisory Board and from Edwards Lifesciences.

Funding Statement

None.

Central Picture Legend (90 characters)

Intraoperative image post–mitral valve repair.

Central Message (200 characters)

Totally endoscopic, robotic-assisted mitral valve repair in patients who had previously undergone transcatheter aortic valve replacement poses additional technical challenges.
Manuscript

Moderate-to-severe mitral regurgitation (MR) affects approximately 25% of patients with severe aortic stenosis undergoing transcatheter aortic valve replacement (TAVR). (1) Even though MR may improve after TAVR in up to 50% due to left ventricular reverse remodeling (1), persistent MR is associated with increased morbidity and hospitalization for heart failure. (2) The best modality for the treatment of severe MR after TAVR remains debated.

We present the case of an acutely decompensated, frail, 86-year-old patient with severe aortic stenosis and moderate-to-severe MR (due to anterolateral commissural prolapse) with multiple comorbidities (Figure 1), who suffered from symptomatic MR after TAVR with the Evolut R (Medtronic, Dublin, Ireland). The patient was denied conventional mitral surgery (due to the high-risk status), transcatheter mitral valve replacement (not meeting the inclusion criteria for the APOLLO trial), and MitraClip (due to location of the prolapse at the anterolateral commissure). We offered a totally endoscopic, robotic-assisted approach for mitral valve repair, which was performed 12 days after TAVR (IRB #2000020356, 10/19/2021 Informed written consent for publication of study data was obtained). Ports were placed in our standard fashion (3), and cardiopulmonary bypass was achieved by percutaneous femoral cannulation. (4) Aortic cross-clamp and cardioplegia delivery were provided using the endoaortic balloon occlusion device (EABO), which was filled with indocyanine green (5) and carefully placed in the ascending aorta. Of note, optimal and safe positioning of the EABO (well above the frame of the Evolut R aortic valve prosthesis and below the brachiocephalic trunk) was achieved by leveraging preoperative CTA imaging (which allowed us to carefully evaluate the peripheral vascular as well as the ascending aortic anatomy of the patient), intraoperative transesophageal echocardiography imaging, bilateral upper extremities arterial pressure monitoring, and
intraoperative visualization of the indocyanine green inside the EABO via the Firefly mode offered by the robotic platform. Additionally, multiple checks of the positioning of the EABO were carried throughout the procedure. After entering the left atrium via the interatrial groove, we exposed the mitral valve while avoiding TAVR valve dislocation via careful manoeuvring of the atrial retractor. The mitral valve had myxomatous degenerative changes, with flailed P1 (which explained the failed improvement after) and anterolateral commissural prolapse. We repaired the valve with commissural plication and placement of a 30-mm Physioflex annuloplasty band. Cardiopulmonary bypass time and aortic cross-clamp time were 115 minutes and 77 minutes, respectively. At the end of the procedure, transesophageal echocardiography revealed trace MR with a mean gradient of 4 mmHg and a still properly positioned and well-functioning Evolut R prosthesis. The patient developed a transient ischemic attack on postoperative day 2, but remained neurologically intact and asymptomatic thereafter.

In conclusion, using a totally endoscopic, robotic-assisted approach is safe and effective for the treatment of persistent severe MR after TAVR in selected patients.
References

Figure 1. Case summary and timeline.

Video 1. Narrated case video.
Acutely decompensated 86 y.o. patient with severe aortic stenosis and mitral regurgitation with comorbidities of Hypertension, hyperlipidemia, chronic HFpEF, type 2 diabetes mellitus, porcelain aorta, past smoker, stage 2 chronic kidney disease, benign prostatic hyperplasia

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 4</th>
<th>Day 9 (Adm 1)</th>
<th>Day 6-9</th>
<th>Day 12</th>
<th>Day 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission 1</td>
<td>Discharge 1</td>
<td>Admission 2</td>
<td>Heart team evaluated for:</td>
<td>✓ Robotic-assisted</td>
<td>Discharge 2</td>
</tr>
<tr>
<td>Urgent TAVR</td>
<td></td>
<td>Persistent MR</td>
<td>✓ Apollo trail (TMVR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Evolute R)</td>
<td></td>
<td></td>
<td>✓ MitraClip</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Sternotomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Mini thoracotomy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>