Open Repair of Long-Segment Aortic Atresia Complicated by Uncontrolled Hypertension

Matthew A. Thompson, BS, BA,1 Meghana Iyer, BS,1 Eric E. Roselli, MD2

1Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
2Aorta Center, Department of Thoracic and Cardiovascular Surgery; Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH

Presented at AATS 2023 Annual Meeting

Conflict of interest: Dr. Roselli discloses consulting relationships with Cook, CryoLife, Gore, Medtronic, and TerumoAortic.

Funding: This study was sponsored in part by the High-Risk Cardiovascular Research Philanthropic Fund (Roselli).

Correspondence: Eric E. Roselli, MD, Cleveland Clinic, Department of Thoracic and Cardiovascular Surgery, 9500 Euclid Avenue/Desk J4-1, Cleveland, OH 44195; Phone: (216) 444-0995; Fax: (216) 636-0991; Email: RosellE@ccf.org; Twitter: @EricRoselliMD

Word count: 749 [max=750]
Glossary of Abbreviations

MAS: Middle Aortic Syndrome
Descending–infrarenal bypass of congenital long-segment aortic atresia in a 35-year-old

Character count = 87 [max=90]

Central Message

Descending–infrarenal aortic bypass can safely treat rarely encountered forms of middle aortic syndrome. A multi-disciplinary approach optimizes diagnosis, follow-up, and lifestyle counseling.

Character Count: 192 [max=200]
Introduction

Middle aortic syndrome (MAS) is a rare vascular anomaly, comprising only 0.5–2.0% of cases of aortic stenosis.\(^1\) We present a case of MAS characterized by long-segment aortic atresia with extreme collateralization, manifesting as poorly controlled hypertension in an otherwise well-developed adult. We performed descending–infrarenal extra-anatomic bypass to treat both her aortic malformation and hypertension, exemplifying how established surgical techniques can be modified to safely treat complex and rarely encountered forms of MAS. Permission was obtained from the patient for publication of study data; IRB approval was not required.

Clinical Summary

A 35-year-old female presented with hypertension refractory to labetalol 400 mg three times daily and nifedipine 90 mg daily, intermittent headaches, chest pain, and dyspnea. Computed tomography showed total occlusion of the thoracic aorta 5 centimeters distal to the left subclavian artery, compensated by massively dilated internal mammary arteries (10 mm) with collateralization to both femoral arteries (Figure 1). After evaluation by pediatric and adult congenital cardiology, she was referred to cardiothoracic surgery for definitive repair.

With the patient in left lateral decubitus, a fourth interspace, muscle-sparing thoracotomy was performed. A 16-millimeter graft was anastomosed end-to-side to the descending thoracic aorta with running 5-0 polypropylene suture. The graft was wrapped in bovine pericardium to prevent pulmonary communication and minimize risk of graft infection. Through a left, posterolateral retroperitoneal incision, a 14-millimeter graft was anastomosed end-to-side to the infrarenal aorta. The thoracic graft was tunneled through the left posterior diaphragm and
pressurized to complete the graft-to-graft anastomosis without kinking (Figure 2A). Her brachial-femoral gradient was reduced from 40 mmHg pre-repair to 5 mmHg post-repair (Video).

The patient was discharged on postoperative day 10 on labetalol 400 mg. Within two months, she was normotensive without antihypertensives. One year postoperatively, the patient was symptom-free and remained normotensive. Her surgical graft was intact with growth of her native thoracic and abdominal aorta to nearly normal anatomic caliber and complete regression of her internal mammary arteries (Figure 2B). When she first presented to our clinic, she was distressed that the new diagnosis of MAS would prevent her from safely having children in the future. Now, two years postoperatively, she is pregnant under the care of her local obstetrician.

Discussion

MAS is a heterogeneous malformation, with syndromic (e.g., Alagille syndrome, Williams syndrome), congenital, and acquired etiologies. Patients are primarily diagnosed in childhood. In a 30-year experience of 53 MAS patients, only 3 (5.7%) were diagnosed in adulthood.\(^2\) Congenital lesions are most commonly seen in pediatric patients, while acquired MAS is far more common in adults. In a series of 143 adult patients with MAS, 76.9% had Takayasu arteritis, 19.6% had atherosclerosis, and only one patient had congenital MAS.\(^3\)

Intraoperative inspection of our patient’s aorta showed robust, healthy tissue, without cobblestoning or atherosclerotic plaques, and, upon restoration of flow, her aorta rapidly remodeled to normal diameter within one year. These observations suggest a late-presenting, congenital etiology.

The location and extent of the aortic lesion and involvement of visceral branches is an important consideration when developing a surgical plan for MAS. Our patient’s complete atresia from the mid-thoracic to juxtarenal aorta was exceptionally rare. In our own experience of
110 adolescent and adult patients with aortic coarctation, only two exhibited long-segment disease. In a systematic review of 630 pediatric patients with MAS, distal thoracic aortic involvement was present in only 3%, with no reported cases of mid-thoracic lesions. Her extent of disease warranted both high thoracic and abdominal exposure. Although not minimally invasive, our two-incision approach was more limited than a traditional thoracoabdominal incision, potentially reducing associated pain, dysfunction, and bleeding from large intercostal collaterals. Axillary–femoral extra-anatomic bypass was considered but not pursued, due to concerns with discomfort, adequacy of flow, and durability in a young, thin patient. Visceral artery involvement is common in MAS, with 66% of patients exhibiting renal artery stenosis. Surprisingly, our patients renal arteries were of normal caliber: a single, 5 mm right renal artery, and two, 3.5 mm left renal arteries.

In the presence of additional cardiac lesions warranting concomitant intervention, Yamamoto and colleagues demonstrated the flexibility of aorto-aortic bypass in their series of six patients with MAS. In one patient requiring concomitant coronary artery bypass grafting and aortic root replacement, they performed ascending–abdominal aortic bypass via median sternotomy, providing necessary exposure for the additional components of the operation.

While established guidelines on post-surgical follow-up and long-term management for MAS patients are limited, we demonstrate that successful treatment of rare aortic malformations can be achieved with multi-disciplinary evaluation, careful surgical planning, and thoughtful postoperative lifestyle counseling, including family planning for young, female patients.
References [max=5]


Figure, Table, and Video Legends

Figure 1. Preoperative computed tomography of long-segment aortic atresia with a descending aortic diameter of 15 mm and an abdominal aorta that reconstitutes juxtarenally from massively dilated internal mammary arteries.

Figure 2. Intraoperative photograph through the retroperitoneal incision demonstrating diaphragmatic tunneling of the thoracic graft with anastomosis to the abdominal graft (A). Computed tomography of the completed repair 14 months postoperatively with a descending aortic diameter of 17 mm, abdominal aortic diameter of 13 mm, and complete regression of internal mammary artery collateralization (B).

Descending aorta: 15 mm
Aortic atresia
Abdominal aorta: 7–8 mm
Internal mammary arteries: 10 mm