“Percutaneous” technique for direct external access to and stenting of obstructed pediatric ventricular assist device inflow cannula

Anne Taylor, MD, Kyong-Jin Lee, MD, Lloyd Felmly, MD, Ali Syed, MD, Chris Almond, MD, Paul Shuttleworth, CCP, Azadeh Issapour, MD, Amy Babb, MD, Michael Ma, MD, Elisabeth Martin, MD

PII: S2666-2507(23)00272-9
DOI: https://doi.org/10.1016/j.xjtc.2023.07.024
Reference: XJTC 1461

To appear in: JTCVS Techniques

Received Date: 27 July 2023
Accepted Date: 31 July 2023

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
“Percutaneous” technique for direct external access to and stenting of obstructed pediatric ventricular assist device inflow cannula

Authors
Anne Taylor MD\(^1\), Kyong-Jin Lee MD\(^1\), Lloyd Felmy MD\(^2\), Ali Syed MD\(^3\), Chris Almond MD\(^1\), Paul Shuttleworth, CCP\(^1\), Azadeh Issapour MD\(^1\), Amy Babb MD\(^4\), Michael Ma MD\(^2\), Elisabeth Martin MD\(^2\)

Author Affiliations
\(^1\)Stanford University, Lucile Packard Children's Hospital, Department of Pediatrics, Pediatric Cardiology, Palo Alto, CA
\(^2\)Stanford University, Lucile Packard Children’s Hospital, Department of Cardiothoracic Surgery, Pediatric Cardiac Surgery
\(^3\)Stanford University, Lucile Packard Children’s Hospital, Department of Radiology, Pediatric Radiology
\(^4\)Stanford University, Department of Anesthesia, Pediatric Anesthesia

Address for Correspondence:
Anne Taylor, MD
Address: 750 Welch Rd, Suite 305, Palo Alto, CA 94304
Email address: ataylor9@stanford.edu

Total word count: 730 case report

Informed consent
The patient’s legal guardian (mother) provided verbal consent for publication of patient’s details in a case report format.

Disclosure statement and acknowledgments
We have no relevant disclosures or funding sources to disclose.
Glossary

Berlin Heart, Berlin Heart EXCOR® pediatric ventricular assist device

LA, left atrium

PCPW, pulmonary capillary wedge pressure

TEE, transesophageal echocardiogram

VAD, ventricular assist device
Central message

We employed a novel approach to access the Berlin Heart inflow cannula to stent the obstructed Gore-Tex chimney inflow apparatus with relief of obstruction and resolution of left atrial hypertension.
The Berlin Heart EXCOR® pediatric ventricular assist device (VAD) is the preferred durable mechanical support in small infants.1,2 Alternative cannulation strategies have emerged to better support small or restrictive ventricles. Mechanical device malfunction includes inflow or outflow cannula obstruction secondary to thrombosis, fibrin deposit, cannula malposition-related kinking/twisting, or infection.3 While there are reports of endovascular access to and stenting of outflow VAD cannula, interventions within the inflow cannula are rarely reported and direct external access to the cannula has been described only once.4-6 We describe a novel hybrid approach of external access to the EXCOR® inflow cannula to facilitate stenting of inflow obstruction. The patient’s legal guardian (mother) provided verbal consent for publication of study data; IRB approval was not required.

A female infant with Shone’s-like complex underwent aortic coarctation and mitral valve repair at 75 days of age. Left atrial (LA) hypertension persisted secondary to diastolic dysfunction and mitral stenosis. At age 5 months, she underwent Berlin Heart EXCOR® pediatric VAD implantation to decompress the LA while awaiting heart transplantation. We utilized a previously described novel LA cannulation strategy in which a 10 mm diameter Gore-Tex ringed “chimney” graft was extended from the inflow cannula through a right atriotomy and anastomosed to a surgically created 10 mm diameter atrial septal defect.7 This approach offers enhanced atrial unloading which is advantageous in restrictive physiology. On VAD day 201, incomplete pump filling was noted. Progressive emesis and rising brain natriuretic peptide prompted surveillance catheterization which revealed pulmonary capillary wedge pressure (PCWP) 24 mmHg indicating LA hypertension with preserved cardiac index 4.0 L/min/m2 by thermodilution. The VAD heart rate was increased with immediate decrease in PCWP to 17
mmHg. Following these maneuvers, there was persistent pulmonary edema, acute kidney injury, and ventilator dependence with ongoing incomplete VAD filling. A computed tomography (CT) scan demonstrated longitudinal narrowing of the chimney graft with a residual lumen 2-3 mm suggestive of a circumferential mural clot (Figure 1A). The standard prophylactic anticoagulation regimen including bivalirudin and clopidogrel were continued. Surgical risk of VAD replacement was deemed very high given prior sternotomies, patient size and comorbid state, therefore a hybrid-based approach was preferable.

The objective was to stent the obstructed chimney graft while minimizing the risks of 1) clot and air embolus, 2) new clot formation and 3) prolonged interruption of VAD support. We describe our approach and equipment in detail (Figure 2). The patient had normal systolic function with native aortic valve opening therefore was at risk of thromboembolism periprocedure via native left ventricular ejection. The right internal jugular vein was prepared for possible extracorporeal membranous oxygenation (ECMO) cannulation to reduce LV preload and limit aortic valve opening. In brief, the Berlin Heart EXCOR® VAD was exchanged for a Pedimag continuous flow VAD and oxygenator membrane (Figure 2). The oxygenator membrane served as a filter to prevent aspirated clot or entrained air entering the outflow cannula. An intervening segment of silicone Pleur-Evac® tubing was placed between the distal inflow cannula and VAD tubing. A long Flexor® Ansel introducer sheath was inserted into the silicone tubing via Seldinger technique while the VAD tubing was temporarily clamped. Given the potential for air entrainment during manipulation of the sheath hemostatic valve, the valve was submerged under water and the VAD system was intermittently clamped during periods of wire or catheter manipulation. Angiography demonstrated long segment graft narrowing to 2.4 mm (Figure 1C, Video A). An 8x29 mm Viabahn VBX covered stent was implanted under transesophageal
echocardiographic (TEE) and fluoroscopic guidance (Figure 1D, Video B). TEE monitoring throughout demonstrated no evidence of clot embolization. CT head prior to and two sequential CT head assessments following the procedure demonstrated no evidence of thromboembolic event. The patient was extubated 3 days later and underwent orthotopic heart transplant on VAD Day 246.

The explanted heart revealed no clot or fibrin between the stent and chimney graft (Figure 2G-H). Given that there was no evidence of thrombus, an alternative theorized mechanism of inflow obstruction is progressive stretching and luminal narrowing of the chimney graft as a result of LA septal position shift following decompression and reduced size of the LA as well as normal cardiac growth, predisposing to cannula twisting or stretching. Close monitoring, with low threshold for cross sectional imaging acquisition, of patients supported by the Berlin Heart EXCOR® for evidence of device malfunction is essential to detect such disturbances to the cannulas. Direct access to VAD cannulas as we describe can be utilized to accurately diagnose cannula malfunction and intervene upon dysfunctional cannula.
Figure 1.

(A) Computed tomography (CT) scan coronal projection with in-cannula narrowing (green arrow).

(B) Transesophageal echocardiogram with narrowing within the Gore-Tex graft, mean inflow gradient 87 mmHg.

(C) Lateral projection angiography demonstrating longitudinal narrowing within Gore-Tex graft distal to the EXCOR® inflow ring and proximal to the LA.

(D) Lateral projection angiography following stent placement demonstrating the distal aspect of the stent apposed to the atrial septum at the entrance to the LA (thick arrow) and the proximal aspect of the stent within the inflow cannula (thin arrow). Stent is 8 mm diameter, 29 mm length. The distal end covers the length of the chimney graft. The proximal aspect of the stent was post-dilated with 10 and 12 mm balloons in order to conform with the Berlin curvature of the inflow cannula. The stent measured 9.6 mm in diameter at the LA insertion site and 23 mm in length. The LA pressure following stent placement was 12 mmHg. Echocardiographic mean gradient <2 mmHg.
Figure 2.

(A) The 6mm Berlin inflow cannula (black thin arrow) was disconnected temporarily from the Berlin Heart EXCOR® pump and attached to the silicone Pleur-Evac tubing (black thick arrow) using a 1/4”-to-3/8” straight connector (white thin arrow). The silicone tubing was connected to the Pedimag tubing using a 3/8”-to-1/4” straight connector (white thick arrow). The configuration included the option to include a right internal jugular venous inflow limb with a Y-connector if additional hemodynamic support is required during periods of time when the Pedimag is clamped (Y connector can be placed at position of black dashed arrow). The Pedimag outflow (white dashed arrow) was connected to an oxygenator membrane. The membrane outflow was connected to the previously existing patient Berlin outflow cannula which was anastomosed to the ascending aorta.

(B) The Pedimag tubing distal to the silicone Pleur-Evac tubing was clamped prior to access (thick white arrow).

(C) Seldinger technique using an 18G introducer needle with a pre-loaded 0.035” Magic Torque™ guidewire was introduced into the silicone Pleur-Evac tubing. An 8 French Flexor® Ansel long introducer sheath was lubricated with saline flush and advanced over an 0.035” Magic Torque™ guidewire to the end of the existing Berlin inflow cannula prior to the Gore-Tex chimney. The silicone formed a very tight seal around the long sheath. Care was taken not to exit the Berlin inflow cannula into the Gore-Tex chimney graft to avoid perturbation of the graft contents. The dilator was removed and the Magic Torque™ guidewire was advanced through the Gore-Tex graft to the left upper pulmonary vein.

(D) A GORE® Viabahn® VBX stent was implanted within the Gore-Tex chimney graft using transesophageal and fluoroscopic guidance.
The sheath hemostatic valve was placed under water during periods of wire and stent manipulation to limit risk of air entrainment. The Pedimag tubing was intermittently clamped during these periods (B).

Explanted heart demonstrating the stented Gore-Tex graft at its insertion into the LA (black arrow).

Preserved explanted heart following dissection of Gore-Tex graft away from stent revealing no thrombus or fibrin deposition to account for graft narrowing (black arrow denotes Gore-Tex graft).

Supplemental Video

As shown in Figure 1C, lateral projection angiography from the long Flexor® introducer sheath within the EXCOR® cannula. Angiography demonstrates a longitudinal narrowing within the Gore-Tex chimney graft distal to the EXCOR® inflow ring and proximal to the LA.

As shown in Figure 1D, angiography from the long Flexor® introducer sheath demonstrating unobstructed flow from the LA, through the stented Gore-Tex chimney, and into the EXCOR® inflow cannula.

Central picture. Stented Berlin Heart ventricular assist device inflow cannula with resolution of obstruction

Angiographic injection from the 8 French Flexor® Ansel long sheath within the Berlin Heart inflow cannula following placement of an 8 mm x 29 mm Viabahn VBX™ covered stent within the Gore-Tex chimney inflow cannula apparatus.