Re-redo aortic root replacement utilizing continuous coronary perfusion via bypass grafting in a patient with impaired cardiac function

Kazuma Handa, MD, Kazuo Shimamura, MD, PhD, Kizuku Yamashita, MD, PhD, Shigeru Miyagawa, MD, PhD

PII: S2666-2507(23)00266-3
DOI: https://doi.org/10.1016/j.xjtc.2023.07.017
Reference: XJTC 1454

To appear in: JTCVS Techniques

Received Date: 22 April 2023
Accepted Date: 20 July 2023

Please cite this article as: Handa K, Shimamura K, Yamashita K, Miyagawa S, Re-redo aortic root replacement utilizing continuous coronary perfusion via bypass grafting in a patient with impaired cardiac function, JTCVS Techniques (2023), doi: https://doi.org/10.1016/j.xjtc.2023.07.017.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Re-redo aortic root replacement utilizing continuous coronary perfusion via bypass grafting in a patient with impaired cardiac function

Kazuma Handa, MD • Kazuo Shimamura, MD, PhD • Kizuku Yamashita, MD, PhD • Shigeru Miyagawa, MD, PhD

Department of Cardiovascular Surgery, Osaka University, Graduate School of Medicine, Yamada-Oka 2-2, Suita, Osaka, Japan

Disclosure Statement: None declared.

Funding Statement: None declared.

Informed Consent Statement: The patient provided written informed consent for publication of this case report.

Name of the ethics committee: Osaka University Hospital Clinical Research Ethics Committee approved the case report and publication of data (approval number.: 16105; approval date: November 2, 2016).
Corresponding author’s complete contact information: Kazuo Shimamura, MD, PhD

Department of Cardiovascular Surgery, Osaka University, Yamada-Oka 2-2, Suita, Osaka, Japan

Tel: +81-6-6879-3154

Fax: +81-6-6879-3154

E-mail: shimamura@surg1.med.osaka-u.ac.jp

Word count: 745 words
Central Picture

Maintenance of coronary blood flow via anastomosed vein graft (*) during the cross-clamp

Central Message

The continuous coronary perfusion via patent bypass grafts and systemic hyperkalemia is a feasible technique to prevent myocardial damage for re-do root replacement necessitating a long cross-clamp.
A 60-year-old man with impaired cardiac function was admitted with heart failure caused by severe aortic insufficiency which was attributed to prosthetic valve endocarditis. Previously, he had undergone a redo aortic root replacement during which the left main trunk was ligated and coronary artery bypass grafting was performed with the left internal thoracic artery. Following re-sternotomy and establishment of cardiopulmonary bypass, the saphenous vein graft was anastomosed to the right coronary artery and connected to the cardiopulmonary bypass circuit for continuous myocardial perfusion. Subsequently, re-redo aortic root replacement was performed while maintaining coronary perfusion through the bypass grafts, and cardiac arrest initiated by systemic hyperkalemia. Postoperative cardiac function was not impaired, and the patient was discharged without any complications.

Keywords: re-redo aortic root replacement, continuous coronary perfusion, systemic hyperkalemia
Introduction

Redo aortic root replacement after coronary artery bypass grafting (CABG) poses a considerable challenge [1]. While there have been reports on surgical approaches, such as beating surgery [2] and systemic hyperkalemia [3, 4], these elaborate procedures have not been well reported in complicated cases, such as multiple redo root replacement for prosthetic valve endocarditis (PVE) after CABG.

Case report

The patient, a 60-year-old man, had previously undergone valve-sparing aortic root replacement (28-mm Gelweave valsalva graft; Vascutek Ltd., Inchinnan, UK) for type A aortic dissection with annuloaortic ectasia 15 years, followed by a redo Bentall procedure (Prima PLUS 23 mm; Edwards Lifesciences, Irvine, CA, USA) for infective endocarditis due to Staphylococcus infection 11 years ago. During the redo Bentall procedure, the left main trunk (LMT) was ligated and CABG was performed using the left internal thoracic artery (LITA).

The patient was admitted with congestive heart failure due to PVE caused by Cardiovacterium valvarum, and the left ventricular ejection fraction was 45%. Transesophageal
echocardiography revealed a 12-mm vegetation at the prosthetic valve leaflet and severe transvalvular leakage. The preoperative risk of the re-redo root replacement was assessed by the European system for cardiac operative risk evaluation score II (24.4%).

Ensuring prolonged and reliable myocardial protection was crucial in this case. Considering the ligated LMT and severe adhesion of the LITA to the chest wall, which made dissection for flow control difficult, antegrade cardioplegia administration was not feasible for myocardial protection and retrograde cardioplegia was also inadequate due to the risk of washout. Therefore, it was necessary to maintain the blood flow to the right coronary artery (RCA) during the cross-clamp.

Following re-sternotomy, cardiopulmonary bypass (CPB) was established by femoral artery and bicaudal cannulation and the saphenous vein graft (SVG) was anastomosed to the RCA. By connecting the SVG to the CPB circuit, myocardial perfusion became completely dependent on the LITA and SVG (SVG flow: 64 mL/min) (Figure 2A). After achieving hypothermia (30°C), the ascending aorta was cross-clamped, and cardiac arrest was initiated by systemic administration of 40 mEq of potassium, resulted in an increase in potassium concentration up to 7.1mEq/L. Thereafter, myocardial protection was provided by continuous
coronary perfusion from the bypass grafts, hypothermia, and systemic hyperkalemia, targeting potassium concentrations 6.0-7.0 mEq/L, with additional administration of 10-20 mEq of potassium every 30 minutes to maintain cardiac arrest. Inspection of the bioprosthesis revealed that the right coronary cusp leaflet was perforated owing to infection (Figure 2B). After complete removal of the prosthetic valve and graft, a new composite Valsalva graft was implanted using the proximal stepwise technique due to the extremely narrow and poor operative field of the aortic root caused by severe adhesions. And this made cannulation at the RCA ostium for perfusion difficult and also made reconstructing the RCA button difficult, resulting in ostium ligation. The heart beat spontaneously when the ultrafiltration decreased potassium concentration to 5.3 mEq/L. After reconstructing the SVG to the ascending prosthetic graft, CPB was easily weaned (SVG flow: 65 mL/min). The cross-clamp time was 226 min. The total potassium administration dose was 110 mEq. Postoperative cardiac function was not impaired, and the MB isoenzyme of creatine kinase peaked at 22.8 U/L. Postoperative cardiac computed tomography showed patency of the LITA and SVG (Figure 2C), and the patient was discharged without any complications.
The patient provided written informed consent for publication of this case report.

Osaka University Hospital Clinical Research Ethics Committee approved the case report and publication of data (approval number: 16105; approval date: November 2, 2016).

Comment

Beating surgery using patent CABG has been reported [2]. However, this method has some procedural difficulties complicated by the beating heart. The achievement of cardiac arrest after CABG by systemic hyperkalemia has been reported [3, 4], with reported cross-clamp time of 126±41 min [3] and 101–114 minutes [4]. In our case, the operative field was limited by the severe adhesion, which had the potential to prolong the CPB time, necessitating cardiac arrest for secure procedures.

Lee JH, et al. reported a higher incidence of reduced cardiac function in the hypothermia with ventricular fibrillation compared to beating surgery [5]. To further reduce myocardial metabolism, in addition to hypothermia, cardiac arrest was induced by systemic hyperkalemia. Consequently, despite the aortic cross-clamp time of nearly 4 hours, no myocardial injury was observed.
The utilization of concomitant CABG for continuous myocardial perfusion and systemic hyperkalemia is a feasible technique for preventing myocardial damage. This technique may serve as an alternative option for challenging cases requiring a prolonged cross-clamp times, such as second redo root replacement for PVE after CABG.

Availability of data and materials

The authors declare that all data in this article are available within the article.

Acknowledgment

We thank Ellen Knapp from Edanz for editing a draft of this manuscript.

Authors’ contributions statement

KH wrote the manuscript. KS and KY revised the manuscript. All authors read and approved the final manuscript.
References

Figure 1.

(A) The SVG (*) anastomosed to the RCA was connected to the CPB circuit. Venous drainage cannulas were placed in the SVC (1) and the IVC (2), and the ascending aorta was cross-clamped (3). (B) The right coronary cusp leaflet of the bioprosthesis was perforated (arrowhead).

Figure 2.

Postoperative cardiac computed tomography shows patency of the LITA and SVG.

SVG: great saphenous vein, LITA: left internal thoracic artery.

Video 1
SVG was bypassed to RCA and connected to CPB circuit to maintain the RCA blood flow during cross-clamp. Under the systemic hyperkalemic arrest, re-do root replacement was safely performed.

RA; right arium, RV; right ventricle, SVG; saphenous vein graft, RCA; right coronary artery, CPB; cardiopulmonary bypass.
Saphenous vein graft
→ Cardiopulmonary bypass
Supplementary

< Preoperative coronary artery evaluation >

Preoperative coronary angiography was not performed due to the presence of mobile large vegetations on the aortic valve, which posed a risk of cerebral embolism. Instead, preoperative coronary artery evaluation was conducted using cardiac computed tomography.

< Selection of the graft used by re-redo aortic root replacement >

Although the use of homograft was considered, their availability is extremely limited to specific facilities in Japan, making immediate utilization difficult in urgent cases such as the present one. Therefore, a new composite graft consisting of a 26-mm Gelweave Valsalva (Vascutek Ltd., Inchinnan, UK) and a 23-mm Inspiris Resilia aortic valve (Edwards Lifesciences) was used for the aortic root replacement. The proximal stepwise technique was performed using a 24-mm Gelweave graft (Vascutek Ltd., Inchinnan, UK) at the annulus level for translocation.

< The applicability of this myocardial protection method for the complex cardiac surgery cases >

The present case demonstrated that this method of myocardial protection, including continuous
coronary perfusion, hypothermia, and the induction of cardiac arrest by systemic hyperkalemia, could be easily established during surgery by adding coronary artery bypass grafting (CABG) in cases where a prolonged aortic cross-clamp period would be anticipated. This approach might serve as a viable option for effective myocardial protection. Even in cases without a history of CABG, the establishment of the same myocardial protection system, as seen in this case, could be achieved simply by performing bypass grafts on both the left and right coronary arteries.

Not limited to this specific re-reo aortic root replacement case, when prolonged cross-clamp period or multiple cross-clamps would be anticipated, regardless of the surgical procedure, we believe that this method of myocardial protection might be highly effective, especially in cases with preoperative impaired cardiac function. Therefore, this case suggested a wide range of potential applications of this myocardial protection method.