Discussion to: Infant Heart Transplant following Donation after Circulatory Death using Normothermic Regional Perfusion and Distant Transport, First Reported Case in North America

Dr. Douglas Overbey, Dr. James Jaggers, Dr. Ziv Beckerman

PII: S2666-2507(23)00231-6
DOI: https://doi.org/10.1016/j.xjtc.2023.07.013
Reference: XJTC 1449

To appear in: JTCVS Techniques

Received Date: 14 July 2023
Accepted Date: 14 July 2023

Please cite this article as: Overbey DD, Jaggers DJ, Beckerman DZ, Discussion to: Infant Heart Transplant following Donation after Circulatory Death using Normothermic Regional Perfusion and Distant Transport, First Reported Case in North America, JTCVS Techniques (2023), doi: https://doi.org/10.1016/j.xjtc.2023.07.013.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Discussion to: Infant Heart Transplant following Donation after Circulatory Death using Normothermic Regional Perfusion and Distant Transport, First Reported Case in North America

Presenter: Dr. Douglas Overbey 1,2
Invited Discussant: Dr. James Jaggers 3
Corresponding Author: Dr. Ziv Beckerman 1,2

1. Duke Children’s Pediatric & Congenital Heart Center, Duke University Medical Center, Durham, NC.
2. Department of Surgery, Duke University Medical Center, Durham, NC.
3. Congenital Cardiac Surgery, Children’s Hospital Colorado, Aurora, CO.

Disclosures: None

Correspondence: Ziv Beckerman, MD. Duke Children's Pediatric & Congenital Heart Center. Division of Cardiovascular and Thoracic Surgery. Duke University Medical Center. 2301 Erwin Road, DUMC 3443. Durham NC, 27710. Email: ziv.beckerman@duke.edu. Phone: 919-681-2343.

Unidentified Speaker 1:

Very nicely presented, and I think I inadvertently said this is from Colorado, but certainly from Duke, but Dr. Jaggers, who's going to open the discussion, is certainly from Colorado. Dr. Jaggers.

Dr. James Jaggers (Aurora, CO):

Well, thank you to the association for the opportunity to comment on this innovative, innovative process and paper. You should be congratulated for being the first to utilize this technology in an organ donation in the pediatric patient. There's a huge enthusiasm for trying to capitalize on these brain-dead donors— or these non-DCD donors. It hasn't been useful in pediatric patients for obvious reasons. You can't use the mechanical perfusion device in a pediatric patient, so normothermic perfusion was your only option. Because this is a case report, I'll just kind of get to my questions and then I'll let other people come up and ask theirs. A couple of technical questions about your process. Do you use just the echocardiogram to evaluate this organ? Or do you use any biochemical markers? And how labor-intensive was it to resuscitate this organ?

Dr. Douglas Overbey (Durham, NC):
We do use only visual inspection and echocardiography to analyze it. On the device side, of course, TransMedics will use lactates, but we haven't found that as usable on this side. Echo is I think the standard of which we'll watch and make sure the organ's functioning well.

Dr. Jaggers:

And I noticed you used two doses of del Nido cardioplegia, one at the time of going on perfusion and then another one prior to transplant. Is that your normal practice or is that just specific for this particular case?

Dr. Overbey:

For longer transport times, that is our preference.

Dr. Jaggers:

It's your normal practice. Okay. So, the Achilles heel with DCD is that agonal period or the functional ischemic period. As you mentioned, in adults, there is a period that's too long where that organ may not [well?] and it's somewhere around 30 minutes or so. Do you think that the pediatric patient will tolerate a longer agonal period or is it going to be about the same?

Dr. Overbey:

Absolutely. I think they'll tolerate much longer times. And that's what Dr. Schroeder has been indicating to us is that in donors that were younger and healthier originally on the adult side they've seen better performance from longer ischemic times in agonal periods.

Dr. Jaggers:

And you touched on it a little bit on your last slide, but the obvious issue here is it's going to be the cost and the resource utilization. Two perfusions, two surgeons, ideally, you'd probably want to take your own nurse because of that sort of critical period of time of the establishment of the perfusion. Do you really think this is going to take off? Is it really going to improve the number of donors?

Dr. Overbey:
I think it's going to go one of two ways. It'll either be limited to centers that have a lot of staff, which have extra perfusionists that they can use for these kinds of things and not interrupt their daily workflow, or it'll move over to a different service like the TransMedics or Medtronic that will be a professional procurement service. And if they had these ECMO circuits available at the donor hospitals, this could be a lot less labor-intensive and be a lot easier. So, I think that might be the direction it goes.

Dr. Jaggers:

Okay. Well, congratulations on this report. It's a great innovation.

Dr. Overbey:

Thank you.

Unidentified Speaker 1:

I think we'll have time for one last question.

Unidentified Speaker 2:

Thank you. Great presentation. I just wanted to mention that we just submitted our first publication of the first pediatric case of using NRP. We've had this program at UCLA since August of 2022. And my question to you is, how do you define the agonal phase? What is the cutoff for blood pressure, saturations, and what is your maximum limit that you go to? At UCLA, we use 60 minutes of agonal phase, and we define it as 20 millimeters below the 50th centile for the age.

Dr. Overbey:

Great questions. I mean, in making the protocol, we had to start changing everything over to percentages instead of absolutes like they were using on the adult side. So similarly, we use less than 60% for saturation, and then we'll go 60 minutes. That was initially what we had decided on these. Blood pressure less than 20 is what we had set. But it's going to be a percentage of what your original blood pressure was. So, it's going to change, like you mentioned, is percentile for that particular age group. So those are cutoffs that we set, and we know that ahead of time, and we won't use the organ. It is a good opportunity to use it for something like a partial heart transplant if you need the roots, or there's other utilization for those organs afterwards, if it extends past that, but we would not take the entire organ if it's beyond that time frame.
Unidentified Speaker 2:

Thank you. And then the heparin dose. We've noticed with the traditional dose of 300 international units per kilo, we actually do develop clots. We've had a few losses. Have you gone up to the higher dose of 500 international units?

Dr. Overbey:

We set the protocol at 400 because of that. Dr. Schroeder mentioned to us that they saw a lot more thrombus forming in these. And so, we elevated it, but we use 400.

Unidentified Speaker 2:

And the circuit, it's not truly an ECMO circuit, it's modified ECMO circuit. Do you use a reservoir?

Dr. Overbey:

We do not have a reservoir, but in the ECMO servers, we have syringes set up to where they can add for these small babies.

Unidentified Speaker 2:

And you haven't had a problem with air entrainment.

Dr. Overbey:

No, we have not.

Unidentified Speaker 2:

Okay. Thank you very much.

Unidentified Speaker 1:

Okay, great. Thanks. Very, very nicely presented. [applause]