Discussion to: The Result of Prospective Evaluation of 3D-Printing-Aided Extensive Thoracoabdominal Aorta Repair

Dr. Sun Jun Park, Dr. Leonard Girardi, Dr. Joon Bum Kim

PII: S2666-2507(23)00229-8
DOI: https://doi.org/10.1016/j.xjtc.2023.07.011
Reference: XJTC 1447

To appear in: JTCVS Techniques

Received Date: 13 July 2023
Accepted Date: 13 July 2023


This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Unidentified Speaker 1:

Thank you, Dr. Park, for this excellent presentation. And Dr. Etz, he had an emergency, so he wasn't going to be able to be here with us today, but Dr. Girardi very graciously decided to help us with the discussion. Thank you.

Dr. Leonard Girardi (New York, NY):

Thank you, Dr. Park. And as Dr. Preventza said, we apologize for you looking up here and you're seeing me and not Dr. Etz. So, I apologize for that. Not having had a chance, though, to review your abstract with any detail-- I mean, your manuscript with any detail, I have a few questions, basically, based on your outstanding results. This is a great result, your incidence of operative mortality, spinal cord dysfunction, and stroke were markedly reduced compared to the other group and amongst some of the best out there, considering that these were all in high-risk step one, two, and three aneurysms. My question for you is, number one, how long does it take you to prepare a 3D model like this? Obviously, that makes it a little bit more challenging in the setting of a symptomatic patient and certainly in the setting of a rupture. And how does that change your operative approach, number one? And then number two, how does the creation of a 3D model help you compared to just looking at a really good
3D CT, which is pretty darn good, at least from what we've seen? So, if you could just comment on those, that would be great.

Dr. Sun Jun Park (Seoul, Korea):

Thank you for your great questions. At first, it takes about two days to two weeks. But it can be adjusted according to the patient status if urgent surgery is required. We can request and then the aortic model can be obtained very speedily. So, it is not a bit harder for us to-- for application this technique in the urgent cases. And the second question is-- actually, in the initial phase of this technique, we had similar concerns about your point. It is really helpful for us to perform this kind of surgery. But when we had this, when there was a case, we performed the surgery without this technique. We felt very stressful to find the segmental arteries and if we did not have the confidence this level of arteries are very important for the particular patients. So, we believe this technique can be helpful for surgeons.

Dr. Girardi:

You're correct. Searching for intercostals can definitely be stressful. That's a fact. But that brings me to my second question then, right? You make holes in the graft in advance, and you get in there and you have one of those stressful and lonely moments where you're not finding anything to reattach and now you've got a couple of holes in the graft. So now what do you do?

Dr. Park:

Excuse me, I couldn't. Can you one more time?

Dr. Girardi:

Yes. So based on your 3D printing, you've identified what you anticipate being the location of your segmental arteries, right?

Dr. Park:

Yeah.

Dr. Girardi:

And whether you use 3D printing or CT with three-dimensional reconstruction, you might find a couple of sets in that vital space that was alluded to between T
8 and T 12 that you might want to reattach. But now you get in there, maybe it's a chronic dissection, maybe it's a degenerative aneurysm, and that area that you had anticipated and were hoping to see two nice big intercostals that aren't heavily back bleeding despite a mean arterial pressure or a systolic pressure of 140, they're not there. And you have now-- you made a hole in the graft, right, based on the 3D printing. So, you already have made your openings in the graft, but now you look down and there's no intercostals. So how do you handle those openings? What do you do?

Dr. Park:

You mean opening the main graft?

Unidentified Speaker 2:

I think they sew the graft onto each of the openings.

Dr. Girardi:

There's a side bridge already on the edge.

Unidentified Speaker 1:

There's a side branch there.

Dr. Girardi:

So you just ligate them.

Dr. Park:

Yeah.

Dr. Girardi:

Okay. Great. Thank you.

Unidentified Speaker 1:
And Dr. Kasey has a question. It seems like.

Unidentified Speaker 3:

Just a comment. Congratulations again, a great presentation and some great results. Because I have some familiarity with the graft that you're using, I'd like to just make two technical comments. One that you stressed in your actual presentation and the other you demonstrated in your film. The first being that if you're going to do this-- and I think it's a great idea and I agree you need multi-institutional data to kind of back it up, but you mentioned stretching it out a great deal before you proceeded with these openings. I agree. I think that's extremely important. The other thing you showed was that the graft was dry, and you cut it with scissors. So, you hadn't soaked it, and you hadn't activated the gelatin. And so, if somebody's so inclined to use eye cautery before they soak the graft, that's not a good idea. It will inflame. Thank you.

Unidentified Speaker 1:

Good comments. Thank you. [applause]