Unidirectional Reversed Potts Shunt With Reinforced Valved Femoral Vein Homograft

Mahmut Öztürk, MD; Aybala Tongut, MD; Manan Desai, MD; Yves d’Udekem, MD, PhD; Can Yerebakan, MD, PhD

Children’s National Hospital, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA

Disclosure Statement: No disclosures.

Funding Statement: No funding was provided for this study.

A waiver of documented consent was granted by the Children’s National Hospital Institutional Review Board

Corresponding author:

Can Yerebakan, MD, PhD

Department of Cardiac Surgery, Children’s National Hospital

The George Washington University School of Medicine and Health Sciences

111 Michigan Ave NW, Washington, DC 20010

Email: cyerebakan@childrensnational.org

Word count: 775
Abbreviations

CPB: Cardiopulmonary bypass

rPS: Reversed Potts shunt

UVS: Unidirectional valved shunt

Central Picture Legend

Femoral vein homograft reinforced with a PTFE conduit.

Central Message

Reinforced femoral vein homograft could be a viable alternative in creating rPS and lessen the risk of infective endocarditis and anticoagulation need.
Introduction

The surgical treatment of drug-refractory idiopathic pulmonary arterial hypertension at the level of the interatrial septum has been the choice of treatment until the emergence of reversed Potts shunt (rPS). Since its introduction, rPS has been utilized in an increasing frequency even as an alternative to lung or heart/lung transplantation in symptomatic patients with suprasystemic pulmonary arterial pressures to mimic Eisenmenger's physiology beyond supraaortic vessels. Although confined to small cohorts, initial results with this approach have been promising with prompt improvement in right ventricular systolic function, quality of life, and prolonged survival\(^1,2\), however, the indication and the optimal technical approach remain obscure. The latest alteration to the classic rPS was the creation of a unidirectional valved shunt (UVS) that unloads the right ventricle and prevents a bidirectional shunting in early systole due to delayed right ventricular contraction or ventricular desynchronization that is observed in pulmonary hypertension\(^3\). Surgically this was performed by sewing a bovine jugular vein graft into a standard PTFE graft.

Herein we present a novel UVS design with 10mm femoral vein graft in 10mm Goretex in a symptomatic patient with refractory pulmonary hypertension and chronic lung disease.

Materials and methods

A waiver of documented consent was granted by the Children's National Hospital Institutional Review Board.

The patient was a 12-year-old girl with pulmonary hypertension associated with a moderate-sized atrial septal defect, history of low birthweight (500g), prematurity (24 weeks), and chronic lung disease. At one year of age, she had been admitted to the hospital due to RSV infection which had
necessitated a VV-ECMO treatment. She presented to our hospital with markedly reduced exercise capacity (NYHA-III) and asthma-like symptoms despite triple therapy with selective IP prostacyclin-receptor agonist, phosphodiesterase-5 inhibitor, and endothelin receptor antagonist.

The surgery was performed via median sternotomy. Cardiopulmonary bypass (CPB) was established through routine aorta-bicaval cannulation and the patient was cooled down to 28°C. Following aortic cross-clamping and antegrade Custodiol cardioplegia, a large ostium secundum ASD was closed through right atriotomy with a Cardiocel neo patch (Lemaitre, Kensington, VIC) using continuous 5-0 prolene suture. A 4 mm fenestration was performed on the patch, through which the left heart was deaired. After the removal of the cross-clamp a valved reverse Potts shunt that was already prepared using a 10 mm femoral vein homograft with a valved section that was inserted into a 10 mm Goretex graft (Video). After measurement of the length the vein graft was sutured on both ends to the Goretex graft using 7/0 prolene in a continuous fashion. Few fenestrations were created on the Goretex to prevent compression due to possible bleeding between the homograft and Goretex tube. On CPB the descending aorta and the isthmus region was side clamped with continous near-infrared spectroscopy monitoring of the lower body. Following an appropriate incision the Potts shunt graft was sutured to the descending aorta distal to the subclavian artery using 6/0 C1 suture. Then the proximal part was attached to the main pulmonary artery using 6/0 prolene suture. Postoperative transesophageal echocardiogram revealed a good left ventricular function, moderately depressed right ventricular function similar to the preoperative level and right to left blood flow through the Potts shunt. A delayed chest closure was performed later. The patient could be discharged home on the postoperative 13th day and doing well on her last follow-up at three months.
Discussion

In patients with refractory pulmonary hypertension with infra- or systemic pulmonary arterial pressures and exercise intolerance placement and bidirectional flow through the rPS could potentially worsen the right ventricular function and pulmonary hypertension. Initial experiences of UVS with flap-valves or jugular vein homografts have been promising. Considering the increased infective endocarditis risk of bovine jugular venous valved conduits and the potential need for anticoagulation after rPS surgery, we preferred using a reinforced cryopreserved valved femoral vein graft as an alternative. We have previously published our experience with this graft in the right ventricular outflow tract position which has yielded comparable results with aortic or pulmonary homografts. Therefore, we suggest the consideration of reinforced femoral vein grafts for the creation of rPS although longer follow-up with a larger group of patients is warranted to determine the durability of this conduit and the prognosis of the patients.
Conclusion

Unidirectional rPS could alleviate the worsening of the right ventricular function and pulmonary circulation due to the intermittent bidirectional flow through the aortopulmonary shunt in pulmonary hypertension patients with infra-or systemic pulmonary artery pressures. In addition to the previous rPS designs with flap valves or jugular vein homografts, femoral vein homograft could be a viable alternative and lessen the risk of infective endocarditis and anticoagulation need. When reinforced with a PTFE conduit, a sustained valve integrity under systemic pressures could be expected.

References


Video Legend

An Alternative for Unidirectional Reversed Potts Shunt – Goretex Reinforced Cryopreserved Valved Femoral Vein Homograft