Percutaneous Indirect Annuloplasty reducing Septal-to-Lateral Mitral Annular Distance to Treat Mitral Regurgitation

Methods

- Shortening the septal-to-lateral (SL) mitral annulus distance using percutaneous technique.

- The device has 3 components:
 a) the “saddle” inserted into the coronary sinus;
 b) the “plug” positioned in the fibrous trigon below the aortic valve (blue arrow);
 c) the “bridge”, a trans-atrial suture connecting the 2 holding elements.

- Two echocardiographic parameters the SL and the coaptation length at P2 level were measured before and after the procedure.

Results

- The procedure was carried out in 10 healthy sheep (completed in 7) through venous access under fluoroscopic and echocardiographic control. Lesions of the aortic valve (2 animals) and perforation of the free wall of the coronary sinus motivated the abandon of the procedure.

- Procedure took 110+/−81 minutes. SL distance decreased from 3.8 mm to 2.6 mm (30%) and maximum increase of mitral leaflet coaptation was 4 mm. Mean mitral gradient was 2mmHg.

Implications

- In this animal model, the technique allowed to achieve significant and predictable reduction in the SL mitral annulus distance.
- It seems to be a promising approach for percutaneous treatment of functional mitral regurgitation.
Percutaneous Reduction of Septal-to-Lateral Mitral Annular Distance to Increase Mitral Leaflet Coaptation Length: Preclinical Study Results

Piergiorgio Tozzi¹ MD, Didier Locca² MD, Giuseppe Siniscalchi³ MD and Souhila Ait-Tigrine⁴ MD

¹Cardiac Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
²Centre Cardiovasculaire Grand Chêne, Lausanne, Switzerland
³Armed Forces Staff, Berne, Switzerland
⁴Cardiology, Clinique du Noirmont, Le Noirmont, Switzerland

Disclosure statement: P. Tozzi and G. Siniscalchi are shareholders of EYE Ltd. P. Tozzi is shareholder of MitralTechnologies SA

Funding statement: The study was partially supported by EYE Ltd, 106-108 Tooting High Street, SW170RR, London and MitralTechnologies SA 4000 Liège, Quai Banning 6, Belgium

This is a meeting paper selected for oral presentation at the Mitral Conclave 2022

Corresponding author

Prof. Piergiorgio Tozzi, MD

Cardiac Surgery Department

Rue du Bugnon 46, 1011 Lausanne, Switzerland

Piergiorgio.Tozzi@chuv.ch

Word count 3967
Glossary of abbreviations

CL: coaptation length

ePTFE: expanded polytetrafluoroethylene

GCV: great cardiac vein

LVOT: left ventricular outflow tract

MR: mitral regurgitation

SL: septal-to-lateral

TEE: transesophageal echocardiography
Central picture

Transcatheter mitral regurgitation treatment reducing septal-to-lateral annular distance

Central message
Original device and technique for indirect mitral annuloplasty. A promising approach for transvenous echocardiography-guided treatment of functional mitral regurgitation.

Perspective statement
This indirect annuloplasty procedure using a novel device and a fully venous approach is technically feasible. It could represent a new treatment for mitral regurgitation in high-surgical-risk patients, particularly since posterior leaflet dynamics are not adversely affected. Concerns specific to indirect annuloplasty devices include device thrombosis, erosion, chronic inflammation, and device failure.
Structured abstract

Objectives.
Percutaneous indirect annuloplasty has emerged as a treatment strategy for functional/ischemic mitral regurgitation. This study sought to evaluate the feasibility of percutaneous indirect annuloplasty technique using a new device.

Methods.
The device has three components: the “saddle” inserted into the great cardiac vein (GCV), the “plug” positioned in the left ventricular outflow tract, and the “bridge”, a transatrial suture connecting the two holding elements. The aim was to shorten the septal-to-lateral (SL) distance of the mitral annulus by pulling on the saddle element. The procedure was performed through venous access in healthy adult sheep. A dedicated catheter holding a needle was used to deploy the saddle into the GCV and pierce its wall toward the left atrium so as to deploy the ePTFE suture that is part of the bridge. A catheter for transseptal puncture was inserted for crossing the interatrial septum and piercing the aortic-mitral curtain, thereby allowing the plug to be deployed. The plug was held in place by the second part of the ePTFE bridge. The two parts of the bridge were then joined to reduce the SL mitral annular distance. The SL distance and the coaptation length at P2 level were measured before and after the procedure using echocardiography.

Results.
Overall, 10 animals were treated, 7 successfully. The mean procedure duration was 110+/-81 minutes. SL distance decreased from 3.8mm to 2.6mm (30%), and maximum increase of mitral leaflet coaptation was 4mm.

Conclusions.
This new approach seems promising for percutaneous treatment of functional mitral regurgitation.
Keywords: mitral valve repair; mitral ring; mitral regurgitation; percutaneous mitral valve surgery

Graphical abstract

Percutaneous Indirect Annuloplasty reducing Septal-to-Lateral Mitral Annular Distance to Treat Mitral Regurgitation

Methods

- Shortening the septal-to-lateral (SL) mitral annulus distance using percutaneous technique.
- The device has 3 components:
 a) the “saddle” inserted into the coronary sinus;
 b) the “plug” positioned in the fibrous trigon below the aortic valve (blue arrow);
 c) the “bridge”, a trans-atrial suture connecting the 2 holding elements.
- Two echocardiographic parameters the SL and the coaptation length at P2 level were measured before and after the procedure.

Results

- The procedure was carried out in 10 healthy sheep (completed in 7) through venous access under fluoroscopic and echocardiographic control. Lesions of the aortic valve (2 animals) and perforation of the free wall of the coronary sinus motivated the abandon of the procedure.
- Procedure took 110+/−81 minutes. SL distance decreased from 3.8 mm to 2.6 mm (30%) and maximum increase of mitral leaflet coaptation was 4 mm. Mean mitral gradient was 2mmHg.

Implications

- In this animal model, the technique allowed to achieve significant and predictable reduction in the SL mitral annulus distance.
- It seems to be a promising approach for percutaneous treatment of functional mitral regurgitation.
Introduction

Functional or ischemic mitral regurgitation (MR) occurs when normal or nearly normal mitral leaflets are prevented from proper coaptation by underlying left ventricular dysfunction and/or mitral annular dilatation. When the annulus is dilated, the septal-to-lateral (SL) mitral annular distance is increased and the mitral annulus loses its typical D shape assuming a circular geometry.

The surgical correction of dilated mitral annulus consists in placing an undersized, rigid annuloplasty ring, which is secured by many sutures directly to the mitral annulus. The physical durability of this technique, called direct annuloplasty, has been demonstrated. Though MR recurrence is possible following annuloplasty mainly due to progressive ventricular dilatation, direct mechanical failure of the ring is rare (1).

In recent years, at least two percutaneous treatments for MR have gained interest and have been granted market approval, one approaching mitral leaflets (MitraClip, Abbott Vascular, Santa Rosa, CA, USA) and one performing a direct annuloplasty that reduces the length of the posterior mitral annulus (Cardioband, Edwards Lifescience, Irvine, USA), both of which have been associated with significant improvement of heart failure symptoms (2). These positive clinical results boost researchers, and additional transcatheter strategies addressing MR are being developed. An example is the Kalios ring (Affluent Medical, Aix-en-Provence, France) that allows percutaneous adjustment of SL distance after surgery, thereby avoiding the need for a reoperation in case of MR recurrence (3).

The isolated percutaneous SL mitral annular distance reduction obtained without stitching the mitral annulus, known as indirect annuloplasty, has emerged as a potential treatment strategy for acute and chronic MR in high-surgical-risk patients, particularly since dynamics and posterior leaflet motion are not adversely influenced (4). Some devices achieving an indirect annuloplasty are under clinical investigation and have all shown promising results in animal
models (5). As with any new technology, the overall safety and durability of these devices in the longer term are still unknown.

We herein report on the first preclinical study aimed at assessing the in vivo feasibility of a novel device for indirect percutaneous mitral annuloplasty.

Method

Device description. As illustrated in Figure 1, the device has an anchor shape and consists of three elements: the “saddle” that is inserted into the coronary sinus; the “plug” that is positioned in the left ventricular outflow tract (LVOT), just below the commissure between non-coronary and left coronary leaflets of the aortic valve, called aortic-mitral curtain; the “bridge” that connects the saddle and the plug. The length of the bridge can be adjusted in order to reduce the SL mitral annular distance. The saddle and plug are made of stainless steel, while the bridge is made of expanded polytetrafluoroethylene (ePTFE).

Deployment technique. The procedure aims at improving leaflet coaptation by shortening the SL diameter of the mitral annulus. Delivery and deployment of the system are achieved through venous access to the right atrium, where two common procedures are performed: (1) catheterization of the coronary sinus, also known as great cardiac vein (GCV), to deploy the saddle element; (2) transseptal puncture to access the aortic-mitral curtain and deploy the plug element. Specifically, the coronary sinus is reached from the right jugular vein under fluoroscopy and a dedicated catheter holding a needle for transseptal puncture is advanced into it. The needle serves to pierce the coronary sinus toward the left atrium, above the mitral annulus, at the middle of the posterior leaflet of the mitral valve (P2), allowing a guidewire to reach the left atrium. Using over-the-wire technique, the saddle element is positioned into the coronary sinus with the ePTFE bridge floating in the left atrium. A second catheter for
transseptal puncture is inserted into the left femoral vein to reach the left atrium. This catheter allows the puncture of the aortic-mitral curtain under echocardiographic control so that a guidewire can pass into the LVOT. The plug is deployed over the wire and held by the ePTFE bridge, which is still in the catheter. Then, a snare catheter is passed in the second catheter to grab the ePTFE bridge part coming from the coronary sinus. Next, the two parts of the ePTFE bridge are pulled and joined together using a stainless steel clip under echocardiographic control to reduce the SL distance and possibly increase leaflet coaptation. Figure 2 illustrates the procedure steps.

Experimental procedure. The research protocol was approved by the Lausanne University and Cantonal Ethics Committee of Vaud (authorization number VD3384 valid from September 13 2018). Healthy adult sheep, 65 to 85kg in weight, underwent full sternotomy under general anesthesia to access the epicardium and perform epicardial ultrasound. A cardiac ultrasound (HD15000, Philips, Eindhoven, The Netherlands) was carried out to acquire images of the heart using either a transesophageal echocardiography (TEE) probe or an epicardial probe. 18Fr introducers were positioned in both femoral veins to gain access to the right atrium under fluoroscopy. Right jugular vein was also cannulated with a 12Fr introducer to access the coronary sinus. Animals were administered 100U/kg IV heparin to achieve an activated clotting time >200 seconds. Two specific echocardiographic parameters were measured at the beginning of the procedure and after device deployment: 1) the SL distance, defined as the projected distance from the trigone-to-trigone line to the posterior peak; 2) the coaptation length (CL), defined as CL=Ad-Ac, where Ad equals the whole length of the anterior leaflet during diastolic phase and Ac equals the length of the uncoapted-free portion of anterior leaflet at end-systole (6). The transmitral gradient was also measured before and after device deployment. At
the end of the procedure, the animals were sacrificed with an overdose of pentobarbital and their heart was explanted for macroscopic analysis.

Study endpoints. The primary endpoint was efficacy of the device in reducing the SL distance and increasing CL at the A2-P2 level. The secondary endpoints included induced iatrogenic aortic valve regurgitation and secondary fistula between the aortic root and left atrium.

Statistical analyses were performed using GraphPad Prism V6.0d (GraphPad Software, La Jolla, California, USA) and SPSS Statistics 22 (IBM Corp., Armonk, New York, USA). A two-tailed p-value <0.05 was considered statistically significant. Continuous data are presented as mean and standard deviation.

Results

The procedure was conducted in 10 animals and was successfully completed in seven. The reasons for non-completion of the procedure included a lesion of the aortic valve in two animals and a perforation of the free wall of the coronary sinus causing pericardial tamponade in one animal. Echocardiography did not show any intracardiac shunt between the LVOT and left atrium. The mean procedure duration was 110±81 minutes. In the 7 animals where the procedure was achieved, SL distance decreased from 3.8±0.5mm to 2.3±0.5mm, which corresponds to an average reduction of 35%. CL increase ranged from 2 to 4mm (Figure 3). No changes in the transaortic gradient was measured after the deployment of the device. Detailed results are presented in Table 1. Macroscopic analysis of the hearts confirmed the correct positioning of the device.

Discussion
Studies on cardiac physiology have shown that, in early systole, the mitral annulus undergoes sphincter-like contraction resulting in an area reduction of approximately 25%. This facilitates coaptation by drawing the free margins of the mitral leaflets into proximity, pre-positioning them such that rising left ventricular pressure is able to press them together to form a competent overlapping coaptation zone almost 1cm in height (7,8).

Historical experimental and clinical studies have established that, at the mitral annulus level, functional and ischemic MR is characterized by a loss of the sphincter-like contraction activity and by an increase in the SL distance causing a lack of leaflet coaptation (8,9). The surgical strategies that have been developed since the early 1970’s to repair MR are mainly based on these observations and aim to restore leaflet coaptation by reducing the SL distance (10). However, when the leaflets are severely diseased and/or the chordae are elongated or ruptured, further complex surgical repair procedures are needed, including leaflet resection and artificial chordae implantation.

Thanks to recent advances in medical device manufacturing and endovascular therapies, the mitral annulus can be reshaped without open-chest procedures and transcatheter mitral valve repair approaches have gained recognition. The demand for transcatheter methods to correct MR notably in patients who are not eligible for edge-to-edge repair is dramatically increasing and the device evaluated in this study has been developed to fulfill this demand.

The concept of using transcatheter techniques to reduce SL mitral annular diameter by pulling on a T-bar inserted into the GCV has already been explored previously (4, 11). The PS3 system, also known as ARTO system, achieves SL distance shortening through direct traction between the interatrial septum at the fossa ovalis and the GCV at the level of the mid-P2 scallop by means of a transatrial suture that connects the two holding elements. Given that the PS3 system applies traction primarily at the P2 level, this force is only transmitted across a relatively short distance to effect a mitral annular shape change. This system has been assessed in an
international, multicenter, prospective, single-arm study on 45 patients with symptomatic grade >2 ischemic MR over a 1-year follow-up. The effective regurgitant orifice area decreased from 30.3±11.1 mm² to 13.5±7.1 mm² and regurgitant volumes from 45.4±15.0 ml to 19.5±10.2 ml. Mitral annular anteroposterior distance decreased from 45.0±3.3 mm to 38.7±3.0 mm. At 30 days, there were two adverse events: one pericardial effusion requiring surgical drainage and one asymptomatic device dislodgement. Significant improvements in NYHA functional class and in the 6-minute walk test were observed at 30 days, which remained stable at 1 year (5).

Although clinical results look extremely positive, one can question the durability of the repair achieved using the interatrial septum as an anchor point for pulling the posterior mitral annulus to increase leaflet coaptation. Thanks to its unique property of compliance, the atrial tissue can act as a volume reservoir of blood during ventricular systole. This property has been extensively studied (12, 13) and is not questionable. Therefore, the interatrial septum tends to deform over time under the effects of physical constrains, including not only all causes of atrial pressure increase but also the pulling action of the transatrial horizontal suture connected to the T-bar positioned in the GCV.

Rogers et al. reported that the mean force required to achieve a 30% reduction in SL distance in an ovine model ranged from 1.16 N to 1.87 N, with a between-animal mean of 1.60 N (~0.36 lbf or 163 gram-force) (4). It can be speculated that compared to healthy hearts, the force necessary to achieve this displacement is higher in dilated hearts, while tissues, particularly atrial tissue, are weaker. This force applied over time on the interatrial septum could induce progressive displacement of the interatrial septum towards the GCV and eventually override the reduction in SL distance, thus compromising the durability of mitral annulus
reshaping. In our view, a more solid point of attachment than the interatrial septum must be found to exert the pulling action needed to displace the posterior mitral annulus.

Anatomical studies of the heart have demonstrated that the fibrous skeleton of the heart is a high-density homogeneous structure of connective tissue that forms and anchors heart valves and influences the forces exerted by and through them (14). It also provides a point of insertion for the bundles of the heart muscle and effectively separates the atria from the ventricles. It is made of the fibrous trigones, the aortomitral continuity, the subvalvular collar of the mitral valve, the membranous septum, the interleaflet triangles, and the tendon of Todaro. Most of the mitral annulus is fibrous and, at the aortic annulus level, the fibrous elements support only the non-coronary aortic sinus and parts of the right and left coronary sinuses: this area is called aortic-mitral curtain and is the one we choose to anchor the plug element of the device assessed in this study (Figure 4). We hypothesized that the aortic-mitral curtain is strong enough to house the plug element without deforming over time and therefore contributes to annuloplasty durability. However, only long-term clinical results will confirm our assumption.

A crucial aspect of the endovascular procedure described in this study is to identify the area where the aortic-mitral curtain can be safely pierced while avoiding lesions of the surrounding valves. Using TEE three-chamber view, it is possible to identify the proper location at the insertion of the middle part of A2 into the mitral annulus while also having a clear view on aortic valve leaflets (Supplemental Material 1). In our study, we experienced two cases of aortic regurgitations: in one animal, perforation of the non-coronary leaflet of the aortic valve occurred because we misestimated the distance between the two aortic valve leaflets; in the second animal, the plug impinged the non-coronary leaflet preventing it from opening. The risk of damaging the aortic valve is real, but this should not discourage endovascular therapists to
use this approach. Gaining experience with TEE 3-chamber view and defining new specific echocardiographic views of the aortic-mitral curtain would reduce the risk of such errors in the future.

TEE also guided the puncture of the coronary sinus towards the left atrium (Figure 5). The latter has to be performed at the P2 level, because previous anatomical series have shown that the mitral annular-GCV distance at the P2 level is quite short (<6mm) when compared to the P3 level (10mm) (15). Consequently, the force exerted by the system at the P2 location is transmitted across a relatively short distance to effect a mitral annular shape change.

As with all indirect annuloplasty systems involving placement of a metal element into the GCV, the T-bar (saddle) used in this study could potentially impinge the circumflex artery. Therefore, angiographic assessment of the circumflex artery crossing the GCV should be mandatory in a clinical setting.

A particular strength of the system evaluated in this study is its ability to achieve significant and predictable reduction in the septal lateral dimension: the maximum achievable degree of SL distance shortening was greater than the degree of shortening usually required to achieve correction of functional MR.

This study carries some methodological limitations. Beside the fact that this is an acute study on a small number of animals, the experimental set-up did not include a diseased mitral valve, therefore we could only speculate that our results are reproducible and have to be validated in a clinical setting. Moreover, the ability of the anterior leaflet to move toward the annulus and to reach the posterior leaflet is essential to warrant a competent valve. If this movement is insufficient, the mitral valve will still leak, regardless of how much the posterior annulus is reduced (16). Another important limitation resides in the lack of chronic results, therefore in the durability of the mitral repair and in the evaluation of possible long term complications on aortic valve and conduction system functions. There are also some technical concerns linked
to the dexterity the therapists need to successfully complete the procedure: an expert in ultrasonographic cardiac imaging and an expert in structural cardiology have to join their expertise to achieve the safe and correct deployment of the device, particularly avoiding aortic valve and AV node lesions. We should also consider some possible discrepancy of location of coronary sinus and the mitral annulus, therefore precise guidance by TEE or direct echo is crucially important. The operator also need to avoid the circumflex artery with the coronary sinus puncture.

Concerns specific to indirect annuloplasty devices include device thrombosis, erosion, biological incompatibility associated with chronic inflammation, and device failure due to fatigue or fracture.

References

Table 1: Experimental findings after septal-to-lateral mitral annular distance reduction

<table>
<thead>
<tr>
<th>Mitral valve</th>
<th>Baseline (healthy sheep)</th>
<th>After transcatheter annuloplasty</th>
<th>Indirect annuloplasty effects in %</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coaptation length (mm)</td>
<td>4.2±0.2</td>
<td>4.9±0.2</td>
<td>+ 12%</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Mean transmitral gradient (mmHg)</td>
<td>2±0.5</td>
<td>2±0.8</td>
<td>None</td>
<td>p=n.s.</td>
</tr>
<tr>
<td>Septal-to-lateral distance (mm)</td>
<td>3.8±0.6</td>
<td>2.6±0.4</td>
<td>- 35%</td>
<td>p<0.001</td>
</tr>
</tbody>
</table>

Abbreviations: n.s., non-significant.

Figure legends
Figure 1. Schematic illustration of the device. A T-shaped metallic element (the saddle) (a) is placed in the great cardiac vein; a retaining metallic element (the plug) (b) is positioned into the left ventricular outflow tract, just below the aortic valve, in the aortic-mitral curtain; a connecting element made of ePTFE (the bridge) (c) joins the two elements by pulling the saddle toward the plug.

Figure 2. Step-by-step description of the procedure. Device elements are in yellow. (a) Catheterization of the coronary sinus to deploy the saddle element into it and to pierce the coronary sinus toward the left atrium, above the mitral annulus, where the ePTFE wire is deployed. (b) Transseptal puncture to access the aortic-mitral curtain so as to deploy the plug element over a guidewire. The plug is held in place by a second ePTFE wire that is still in the catheter. (c) A snare catheter is passed in the second catheter to grab the ePTFE part coming from the coronary sinus. (d) The two parts of the ePTFE bridge are then pulled and joined together using a stainless steel clip under echocardiographic control to reduce the septal-to-lateral distance.

Figure 3. Transesophageal echocardiography with 3-dimensional reconstruction of the mitral valve showing the final result. Upper left: septal-to-lateral mitral annular distances before and after the procedure. Down right: bridge overlying the mitral valve.

Figure 4. Three-dimensional CT scan reconstruction of the healthy human heart. The green area corresponds to the fibrous skeleton of the heart. The blue arrow indicates the targeted area for piercing the fibrous skeleton of the heart: the aortic-mitral curtain, which is the fibrous area between the anterior leaflet of the mitral valve and the non-coronary and left coronary leaflets of the aortic valve. The two red spots indicate the two trigones, anterior and posterior.
Figure 5. Transesophageal echocardiography with 3-dimensional reconstruction of the mitral valve showing the catheter coming from the coronary sinus, piercing the vein toward the atrium (down right).

Supplemental material: Transesophageal echocardiography images illustrating the technique of piercing the aortic-mitral curtain (yellow arrow) to safely deploy the retaining element (the plug) into the left ventricular outflow tract.
Transcatheter mitral regurgitation treatment reducing septal-to-lateral annular distance
Supplement material

Aortic valve

Mitral valve
Methods

10 adult healthy sheep received mitral annuloplasty under fluoroscopy and echocardiographic control.