Autologous Repair of “Very Asymmetric” Bicuspid Aortic Valves using Geometric Ring Annuloplasty

Marek A. Deja, MD, Radoslaw Gocol, MD, J. Scott Rankin, MD, Lawrence M. Wei, MD, Vinay Badhwar, MD, Marek J. Jasinski, MD

PII: S2666-2507(22)00521-1
DOI: https://doi.org/10.1016/j.xjtc.2022.08.031
Reference: XJTC 1255

To appear in: JTCVS Techniques

Received Date: 18 May 2022
Accepted Date: 24 August 2022

Please cite this article as: Deja MA, Gocol R, Rankin JS, Wei LM, Badhwar V, Jasinski MJ, Autologous Repair of “Very Asymmetric” Bicuspid Aortic Valves using Geometric Ring Annuloplasty JTCVS Techniques (2022), doi: https://doi.org/10.1016/j.xjtc.2022.08.031.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2022 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Autologous Repair of “Very Asymmetric” Bicuspid Aortic Valves
using Geometric Ring Annuloplasty

Short Title: BAV Repair

Marek A. Deja MD\textsuperscript{1}, Radoslaw Gocol MD\textsuperscript{1}, J. Scott Rankin MD\textsuperscript{2}, Lawrence M. Wei MD\textsuperscript{2}, Vinay Badhwar MD\textsuperscript{3}, Marek J. Jasinski MD\textsuperscript{4}

Medical University of Silesia, Katowice, Poland
West Virginia University, Morgantown, West Virginia, USA
Wroclaw Medical University, Wroclaw, Poland

Author for correspondence:
Marek A. Deja MD
Professor of Surgery
Medical University of Silesia
mdeja@sum.edu.pl

Disclosures: The bicuspid aortic annuloplasty ring was developed by BioStable Science and Engineering, Austin Texas, USA; www.biostable-s-e.com, and is FDA approved in the United States (21 CFR 870.3800) and CE Marked in Europe (G7 103732 0008). Drs. Jasinski and Rankin are consultants for this company. None of the other authors have any relevant disclosures. No funding was obtained for the generation of this paper, and the study was entirely investigator-initiated. The study was approved by the Institutional Review Board of West Virginia University for retrospective analysis of de-identified clinical data (#2005016064; Approval date 05/29/2020; Expiration date 05/28/2025)

Abstract Words: 101
Manuscript Text Words: 1,384
References: 12
Figures: 2
Videos: 1

Video presented at the Aortic Symposium of the 102\textsuperscript{nd} meeting of the American Association for Thoracic Surgery, Boston MA, May 13\textsuperscript{th}, 2022.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FEL</td>
<td>Leaflet Free-Edge Length</td>
</tr>
<tr>
<td>D</td>
<td>Annular Diameter</td>
</tr>
<tr>
<td>BAV</td>
<td>Bicuspid Aortic Valve</td>
</tr>
</tbody>
</table>
Central Picture Legend: Remodeling of “very asymmetric” bicuspid valves achieved by the 180° annuloplasty ring.

Central Message

Bicuspid valves with three equal-sized sinuses have been difficult to repair. With geometric ring annuloplasty, the 180° bicuspid ring remolds the annulus into equal-sized fused and non-fused segments, converting every valve to “symmetrical” geometry. “Very asymmetrical” valves become routine candidates for repair, as with any other bicuspid configuration.

Perspective Statement

Bicuspid valves with 3 equal-sized sinuses, also called “very symmetric” bicuspid valves, have been difficult to repair. Geometric ring annuloplasty reduces annular size, but also remolds the fused and non-fused annuli into 2 equal-sized segments, converting every valve to “symmetrical” 180° geometry, no matter the preoperative configuration.
Abstract

Bicuspid aortic valve repair for aortic insufficiency achieves superior long-term outcomes, and conversion from prosthetic valve replacement to routine autologous reconstruction is an appropriate goal. However, certain varieties of bicuspid valves have been difficult to repair, including those with three equal-sized sinuses, also termed “very asymmetric” bicuspid valves. Geometric ring annuloplasty was developed to provide major remodeling of annular size and shape, converting every bicuspid valve to 180° symmetrical geometry, no matter the preoperative configuration. This article presents the concept that bicuspid reconstruction with 180° annuloplasty rings brings most “very asymmetric” bicuspid valves into the realm of routine and standardized repair.

Introduction

Repair of regurgitant bicuspid aortic valves (BAV) can yield good long-term results and achieve excellent long-term survival\(^1\)-\(^3\). Favorable results stem from in-depth understanding of BAV anatomy and function. A repair-oriented anatomical classification of BAV has been presented: Type A – symmetrical valve with commissural orientation of 180°-160°; Type B – asymmetrical BAV with commissural orientation of 159°-140°; and Type C – “very asymmetrical” BAV with commissural orientation of 139°-120°\(^4\). It has been demonstrated that increasing valve asymmetry is associated with more technical difficulty and lower repair durability\(^5\).

While repair methods for Types A and B are quite well established, the approach to very asymmetric BAV remains controversial. The El Khoury group prefers valve tricuspidization using a pericardial patch to create a new commissure, preserving 120° orientation\(^6\). However, this approach often fails due to pericardial degeneration. Others try to achieve more symmetrical...
valve orientation by either fused sinus plication or non-fused sinus patch augmentation. These methods are somewhat subjective and difficult to achieve complete valve symmetry. In the joint experience of the Brussels and Homburg/Saar groups, valve replacement for an expected or an actual unsatisfactory repair result was more frequent in type C compared to types A and B. Also in only 36% was bi-leaflet repair performed while the neo-commissure was created in majority of patients. Our method provides relatively simple solution to this surgically demanding scenario, with the goal of increasing the number of repairable aortic valves.

Our approach is based on using an internal bicuspid annuloplasty ring to not only provide annular reduction, but also to routinely achieve 180° valve symmetry. The HAART 200 ring (BioStable Science and Engineering, Austin TX) has circular base geometry with 180° sub-commissural posts (Figure 1A). It is sized according to inter-commissural diameter and keeps that dimension unchanged. With trans-annular suturing, the ring brings the sinus-to-sinus dimension centrally to improve leaflet coaptation. More important, the ring remolds the fused and non-fused sinuses into equal annular segments. In this way, the ring establishes 180° valve geometry, no matter the preoperative configuration. The study was approved by the Institutional Review Board of West Virginia University for retrospective analysis of de-identified clinical data (#2005016064; Approval date 05/29/2020; Expiration date 05/28/2025).

Case Video Summary (Surgical Technique)

A video is provided to illustrate the concepts involved (Video 1). After inspecting the valve to assess symmetry and relative leaflet configurations, the ring and valve are sized. The non-fused leaflet serves as a reference, and its free-edge length (FEL) is measured with a ball sizer that predicts required ring diameter (D) as: D = FEL/1.5 (Figure 1B). That size ball also should fit the inter-commissural distance. First, the commissural mattress sutures are placed...
from one sinus into the sub-commissural triangle, through the commissural ring post, and then back to the sub-commissural triangle out the another sinus. To facilitate proper commissural suture placement, blue dots are marked 3-5 mm below the tops of both sub-commissural triangles to ensure the commissural ring posts are implanted reproducibly. The bottom commissural horizontal mattress suture of 3-0 braided polyester is passed 2 mm deep to the leaflet-aortic junction, at a pledget width below the blue dot - then through the base of the ring post - then out the other side, 2 mm deep to the leaflet-aortic junction below and above the valve. The top horizontal mattress suture is passed into the blue dot - through the tip of the ring post - and out the other side - adding a fine Dacron supra-annular pledget. The second subcommissural suture is placed similarly. Again, it is important to pass the sutures 2 mm deep in the aortic annulus and away from the leaflet to prevent leaflet-Dacron contact that could abrade the leaflet. Also, the ring posts should be positioned low in each sub-commissural triangle to raise the commissural tops relative to the base of the valve.

Next, the ring is carefully passed below the valve, keeping commissural sutures tight. To prevent gaps, 3-0 braided annular sutures that loop the ring are placed close to the commissural sutures and into the non-fused annulus top-down, 2 mm deep the leaflet insertion, and retrieved behind the ring. Then, the sutures are passed bottom-up through the annulus in front of the ring, effectively looping the ring. Fine Dacron supra-annular pledgets are added throughout. After two looping sutures are placed adjacent to the commissural stitches, 1-3 middle non-fused looping sutures are passed, once again 2 mm deep to the leaflet-aortic junction. Finally, the lateral fused annular looping sutures are placed top-down next to the commissural sutures, retrieved behind the ring, and then passed bottom-up back into the aorta 2 mm deep to the leaflet. The second left sinus and right sinus looping sutures are passed close to the raphe. If a gap still remains under the
raphe, an additional looping suture can be used to straddle the raphe and to eliminate the gap. In general, the entire annulus should be controlled by sutures, with no gaps, and more sutures often are required in larger valves.

The two commissural sutures are tied first – slowly and tightly to wrap the commissure around the ring post. Then, one arm of the suture is passed down and lateral through the pledget (away from the leaflet), tied again, and cut short to prevent leaflet-suture contact. The second commissural suture also is tied and fixed laterally. The non-fused looping sutures followed by fused annular looping sutures are tied tightly, laterally fixed, and cut short. At this stage, both leaflets have been moved centrally. Ample fused leaflet tissue usually exists, because of major differential fused annular reduction. Prolapse correction by leaflet plication then is guided by the concept that a bicuspid valve during systole should be a cylinder with equal inflow and outflow circumferences. Thus, leaflet free-edge length should be shortened by plication to half of ring circumference. For example, half the circumference of a 23 mm ring is 36 mm and of a 25 mm ring 39 mm.

Plication is guided by measuring free-edge length with a silk suture, and then free-edge length is shortened to half the ring circumference. Plication sutures of 6-0 Prolene are placed to the right and left of the nodulus, to reduce the non-fused free-edge to the desired length. This also raises the non-fused leaflet to a proper effective height. Linear cleft closure then is started in the middle of the thickened cleft tissue using simple interrupted 5-0 Prolene sutures. This linear closure increases the geometric height of the fused leaflet to match the non-fused leaflet as the reference. The interrupted suture line usually requires 2 to 5 sutures, to the limit of the cleft tissue. The goal is to achieve a similar free-edge length to that of the reference non-fused leaflet (Figure 2). With testing by commissural stretching, free-edge lengths and effective heights
should match nicely, with good leaflet vertical coaptation. The aortotomy is closed with a running suture.

Post-repair echocardiography routinely shows a competent valve with good leaflet motion and low gradients. Using the algorithms described, the leaflets open well with a circular orifice, since the fused and non-fused annuli have been remodeled from 3 equal sinuses to 2 equal hemi-annular geometries (Figure 2). In the presented case, the peak gradient was 22 mmHg, and the mean gradient 12mm Hg, with a trace of aortic regurgitation on the immediate postoperative TEE. A month later, the peak gradient was 20mmHg, the mean was 11mmHg, and there was no detectable aortic regurgitation.

Longitudinal outcomes with geometric ring annuloplasty have been excellent, and this approach allows routine repair of BAV defects with “very asymmetric” geometry. While commissural angles were not specifically measured in previous studies, intermediate-type BAV’s and unicuspid valves accounted for approximately one-fifth of that series, and these defects frequently display three equal-sized sinuses. In our analysis at 7.5 years of maximal follow-up, aortic regurgitation remained low, and gradients acceptable. At latest echo follow-up, specific values for aortic regurgitation Grade averaged 0.4±0.8, and mean valve gradient 12.3±5.9 mmHg. Thus, the concepts in this brief report supplement those in previous papers with regard to applicability of geometric ring annuloplasty in the “very asymmetric” BAV subgroup.

**Conclusion**

In summary, geometric ring annuloplasty for BAV repair remolds the annulus into equal fused and non-fused segments with 180° commissures. This major remodeling allows routine repair of “very asymmetric” bicuspid valves with 3 equal sinuses, without the need to add
pericardium, or to perform complex sinus or reimplantation procedures. Thus, pre-repair sinus configuration becomes less important, since after repair, all valves assume 180° geometry.

**References**


Figure 1 Legend: Panel A - The bicuspid annuloplasty ring used for remodelling of “very asymmetric” bicuspid valves. Panel B – the ball sizer that is placed into the non-fused sinus behind the leaflet to measure leaflet free-edge length.
Figure 2 Legend: Pre- and post-repair views of valve anatomy, echocardiography, and geometry are shown to illustrate the precise valve and annular remodelling that occur with this approach. The green arrow indicates the commissural fusion and cleft. The blue arrow illustrates the cleft closure.

Video 1 Legend: An illustrative case video is presented of bicuspid valve repair in the setting of “very asymmetrical” sinus geometry. The 3 equal-sized sinuses and annular segments are remodelled by the annuloplasty ring to convert the valve to a symmetrical two-leaflet 180° configuration, no matter the pre-repair geometry:

http://www.jsrmd.com/ftp/337_FDBAVc.mp4
Ring Remodeling Repair of “Very Asymmetric” Bicuspid Aortic Valve

Pre-Repair

Post-Repair
“Very Asymmetric” Bicuspid Valve

Anatomy  Echo  Geometry

Pre-Repair

Post-Repair