Patient-specific simulation for tracheobronchial reconstruction procedures using three-dimensional operable models: a proof-of-concept study

Kohei Hashimoto, MD, PhD, Kenshiro Omura, MD, Naoya Iwamoto, MD, Junji Ichinose, MD, PhD, Yosuke Matsuura, MD, PhD, Masayuki Nakao, MD, PhD, Mingyon Mun, MD, PhD

PII: S2666-2507(22)00131-6
DOI: https://doi.org/10.1016/j.xjtc.2022.02.023
Reference: XJTC 1072

To appear in: JTCVS Techniques

Received Date: 30 November 2021
Accepted Date: 16 February 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2022 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Brief Research Report

Patient-specific simulation for tracheobronchial reconstruction procedures using three-dimensional operable models: a proof-of-concept study

Kohei Hashimoto MD, PhD, Kenshiro Omura MD, Naoya Iwamoto MD, Junji Ichinose MD, PhD, Yosuke Matsuura MD, PhD, Masayuki Nakao MD, PhD, Mingyon Mun MD, PhD

1Department of Thoracic Surgical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan

Corresponding author: Kohei Hashimoto, Department of Thoracic Surgical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research

Address: 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan

Email: kohei.hashimoto@jfcr.or.jp Tel: +81-3-3520-0111 Fax: +81-3-3520-0141

Funding information: No financial disclosure. This study was supported by the divisional funding and Grant-in-Aid for Scientific Research, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (20K17762). This study was approved by the Institutional Review Board of Cancer Institute Hospital (No. 2020-GA-1334) on May 28, 2021 and consent was waived because of its retrospective nature. word count 733/750
Central picture legend

An operable 3D airway model for patient-specific simulation based on computed tomography.

Central message

Operable 3D printed airway models with precise human anatomy including invasive lesions demonstrate promise for practical, patient-specific surgical simulation for tracheobronchial reconstruction.
Introduction

In the Cone of Experience claimed by Edgar Dale in 1946, simulated activity was considered the second-best learning experience after actual activity\(^1\). This is still valid in modern surgical practice where both patient safety and learning experience need to be protected. Surgical simulation may be particularly beneficial for rare, complex, and high-risk procedures, such as tracheobronchial reconstruction. Operable airway models using preoperative computed tomography (CT) data were developed to assist in the patient-specific simulation of tracheobronchial reconstruction procedures.

Methods

This retrospective study included three patients with non-small cell lung cancers who underwent sleeve lobectomies: right upper sleeve lobectomy (Case 1: 76-year-old man), right middle and lower sleeve lobectomy (Case 2: 60-year-old woman), and left lower and lingular segment extended sleeve lobectomy (Case 3: 59-year-old man). The invasive lesion in the central airway was annotated (Synapse Vincent; Fujifilm, Tokyo, Japan) in each preoperative enhanced chest CT (slice thickness, 1.25 mm) image (Fig.1A). The DICOM data were converted to three-dimensional (3D) data (OsiriX MD version 12.0; Pixmeo, Geneva, Switzerland). The invasive lesion was demarcated by subtracting the CT data from the
annotated CT data (Fig.1B). The airway structure was determined, and the cartilage was distinguished from other connective tissues (Geomagic Freeform; 3D Systems, SC, USA) (Fig.1C). The data were then converted into the STL format for 3D printing using the Geomagic Freeform software. The hard plastic models of the cartilage and other tissues were separately 3D printed (SCS-8100; Sony Manufacturing Systems, Saitama, Japan), which served as frameworks for the creation of silicone molds. Two urethan materials mimicking the cartilage (HAPLA PUDDING GEL-PL00; POLYSIS, Shizuoka, Japan) and the remaining connective tissue, including the invasive lesion (ADAPT, RU-843A-N80; Nisshin Resin, Kanagawa, Japan) were poured into the molds, while the two parts were combined using a vacuum casting method (CrossMedical, Kyoto, Japan). Gauze strips were integrated into the connective-tissue part to strengthen the cut-resistance. The invasive lesions were highlighted in blue. Each model was evaluated by the surgeon of each operation. This study was approved by the Institutional Ethical Review Board (No. 2020-GA-1334) on May 28, 2021 and consent was waived because of its retrospective nature.

Results

Three models including invasive lesions were successfully created (Fig.2). Three
surgeons successfully reproduced the surgical procedures in the 3D airway models (Video).

The models were rated based on how closely these reproduced actual surgeries (Likert scale: 1 = poor to 5 = excellent). The median (range) scores were acceptable: anatomical reproducibility, 5 (4–5); disease reproducibility, 4 (4–5); surgical exposure, 4 (3–5); rigidity, 3 (2–4); elasticity, 4 (3–5); resistance to needles, 3 (2–4); and resistance to tying, 3 (3–4). The time from planning chest CT (re-evaluation CT was performed, when necessary, which did not change the surgical plan) to actual surgeries in Cases 1/2/3 were 25, 36, and 27 days, respectively. The time from data extraction to receiving of the model was 31, 17, and 17 days, respectively in these retrospective settings. The authors (thoracic surgeons) needed approximately an hour to depict disease lesions using the software, extract data, and examine the 3D design of the model before manufacturing each model.

Discussion

In this retrospective study, the feasibility of creating a model for a patient-specific tracheobronchial simulation was proven. Theoretically, any type of airway can be created using this methodology. The cases included in this study are usually manageable without simulation by experienced surgeons. However, simulation may benefit junior surgeons and even experienced surgeons when they encounter highly complex reconstruction, such as
carinal reconstruction2,3. In thoracic surgery area, 3D printed models have been proposed for the purpose of surgical simulation by appreciating real-size anatomy4. However, our airway model is the first patient-specific model for tracheobronchial surgery to our knowledge. Compared to existing simulation models based on animals or cadavers, we believe that our model has an advantage due to its portability and better anatomical clarity including target diseases.

We required 31 days for creating a model for Case 1 that involved a “trial-and-error” process. Based on the knowledge obtained from the 1st model, the latter two models for Cases 2 and 3 were successfully made within 3 weeks. With this model, we plan to perform a prospective study to demonstrate the utility of patient-specific simulations.

Conclusion

3D operable airway models representing precise airway anatomy, including invasive lesions, were successfully created based on preoperative CT data, demonstrating a promise for prospective patient-specific simulation for tracheobronchial reconstruction.

Figure legend

Fig. 1: The sequence of the creation of the model (Case 1: right upper sleeve lobectomy).
A, Upper: The invasive area on the central airway was annotated (green) on preoperative chest computed tomography (CT) images. Lower: The same slice of the chest CT without annotation (raw CT data).

B, The demarcation of the invasive lesion in the central airway by subtracting raw CT data from annotated CT data.

C, The design of a three-dimensional airway model using data obtained during chest CT. Note that the pink-area (connective tissue) is separately recognized from the white area (cartilage).

Fig. 2: A three-dimensional airway model consisting of multiple urethan materials representing the cartilage and the remaining connective tissue, including the invasive lesion in the central airway. Note that the invasive lesion is highlighted in blue color on the outer surface.

Video legend

The demonstration of comparison between sleeve lobectomies reproduced using the airway model and the actual surgeries (Cases 2 and 3).

Acknowledgement

We thank Drs. Takashi Yamamichi, Satoru Tamagawa, Yasuto Kondo, and Hiroki Ozawa.
for assisting surgical simulation on the models.

References

Case 1
Right upper sleeve lobectomy

Case 2
Right middle and lower sleeve lobectomy

Case 3
Left lower and lingular segment extended sleeve lobectomy
Right middle and lower sleeve lobectomy