Commentary: Standardized adaptation of aortic valve reimplantation to cusp geometry

Hans-Joachim Schäfers, MD, PhD

PII: S2666-2507(22)00095-5
DOI: https://doi.org/10.1016/j.xjtc.2022.02.011
Reference: XJTC 1052

To appear in: JTCVS Techniques

Received Date: 19 January 2022
Revised Date: 19 January 2022
Accepted Date: 15 February 2022

Please cite this article as: Schäfers HJ, Commentary: Standardized adaptation of aortic valve reimplantation to cusp geometry, JTCVS Techniques (2022), doi: https://doi.org/10.1016/j.xjtc.2022.02.011.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2022 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Commentary: Standardized adaptation of aortic valve reimplantation to cusp geometry

Hans-Joachim Schäfers, MD, PhD
Department of Thoracic and Cardiovascular Surgery
Saarland University Medical Center, Homburg/Saar, Germany

Word count: 334

Conflict of Interest: The author has no conflict of interest regarding the topic.

Corresponding Author:
Address for correspondence
Prof. Dr. Hans-Joachim Schaefers
Department of Thoracic and Cardiovascular Surgery
Saarland University Medical Center
Homburg/Saar, Germany
Email: H-J.Schaefers@uks.eu
Fax: +49-6841-1632005
Central Message:

Aortic valve reimplantation can be adapted to given cusp sizes by calculated reduction of annular diameter.
The goal of valve-preserving root replacement is the restoration of normal aortic valve form, coaptation, and thus function to achieve the best valve durability. In order to achieve that the operation must accommodate the geometry of the cusps, which may differ in size. Several studies have shown that effective cusp height (1) is a good indicator of valve configuration. In normal aortic valves, it has a close correlation with geometric cusp height (2, 3). In order to achieve normal aortic configuration with adequate coaptation through valve-preserving surgery, modification of annular and sinotubular dimensions may be helpful (4). In particular, reduction of annular size can improve coaptation.

Aortic valve reimplantation is probably the most popular form of valve-preserving aortic replacement; it stabilizes the aortic root at annular and sinotubular level. Different graft sizing methods are employed (5, 6), even though many surgeons simply use a 30 mm graft. Both annular and sinotubular dimensions will be more or less identical if a tubular graft is used. The given cusp sizes, however, may require size adaptation, i.e. further reduction of annular size in order to improve valve coaptation. As yet, this is done based on subjective surgical judgment or involuntarily on tying the basal sutures.

The current proposition (7) takes a controlled approach to annular size adaptation, using a simple formula with geometric cusp height as the determinant. Effective height is set at 45% of geometric height, as found in normal aortic valves (3). Annular size is predicted and controlled by tying the lower suture line around a Hegar dilator of the desired size.

Using their formula, the colleagues could achieve normal aortic valve form and function in a reproducible fashion (7). While the results are early and need to be confirmed by more experience and other surgeons, this approach appears as an interesting modification of the standard operation towards a geometry-based reconstruction of the aortic valve. It may help others to improve the results of aortic valve reimplantation even in the absence of extensive personal experience.
References


Commentary: Standardized adaptation of aortic valve reimplantation to cusp geometry

Hans-Joachim Schäfers, MD, PhD
Department of Thoracic and Cardiovascular Surgery
Saarland University Medical Center, Homburg/Saar, Germany

Word count: 334

Conflict of Interest: The author has no conflict of interest regarding the topic.

Corresponding Author:
Address for correspondence
Prof. Dr. Hans-Joachim Schäfers
Department of Thoracic and Cardiovascular Surgery
Saarland University Medical Center
Homburg/Saar, Germany
Email: H-J.Schaefers@uks.eu
Fax: +49-6841-1632005
Central Message:

Aortic valve reimplantation can be adapted to given cusp sizes by calculated reduction of annular diameter.
The goal of valve-preserving root replacement is the restoration of normal aortic valve form, coaptation, and thus function to achieve the best valve durability. In order to achieve that the operation must accommodate the geometry of the cusps, which may differ in size. Several studies have shown that effective cusp height (1) is a good indicator of valve configuration. In normal aortic valves, it has a close correlation with geometric cusp height (2, 3). In order to achieve normal aortic configuration with adequate coaptation through valve-preserving surgery, modification of annular and sinotubular dimensions may be helpful (4). In particular, reduction of annular size can improve coaptation.

Aortic valve reimplantation is probably the most popular form of valve-preserving aortic replacement; it stabilizes the aortic root at annular and sinotubular level. Different graft sizing methods are employed (5, 6), even though many surgeons simply use a 30 mm graft. Both annular and sinotubular dimensions will be more or less identical if a tubular graft is used. The given cusp sizes, however, may require size adaptation, i.e. further reduction of annular size in order to improve valve coaptation. As yet, this is done based on subjective surgical judgment or involuntarily on tying the basal sutures.

The current proposition (7) takes a controlled approach to annular size adaptation, using a simple formula with geometric cusp height as the determinant. Effective height is set at 45% of geometric height, as found in normal aortic valves (3). Annular size is predicted and controlled by tying the lower suture line around a Hegar dilator of the desired size.

Using their formula, the colleagues could achieve normal aortic valve form and function in a reproducible fashion (7). While the results are early and need to be confirmed by more experience and other surgeons, this approach appears as an interesting modification of the standard operation towards a geometry-based reconstruction of the aortic valve. It may help others to improve the results of aortic valve reimplantation even in the absence of extensive personal experience.
References


