Commentary: 3-Dimension Models In Adult Cardiac Surgery: A Gimmick or a Futuristic Concept?

Sameer A. Hirji, MD MPH, Sary Aranki, MD

PII: S2666-2507(22)00007-4
DOI: https://doi.org/10.1016/j.xjtc.2022.01.002
Reference: XJTC 999

To appear in: JTCVS Techniques

Received Date: 1 December 2021
Revised Date: 1 December 2021
Accepted Date: 7 January 2022

Please cite this article as: Hirji SA, Aranki S, Commentary: 3-Dimension Models In Adult Cardiac Surgery: A Gimmick or a Futuristic Concept?, JTCVS Techniques (2022), doi: https://doi.org/10.1016/j.xjtc.2022.01.002.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2022 The Authors. Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
Commentary: 3-Dimension Models In Adult Cardiac Surgery: A Gimmick or a Futuristic Concept?

Sameer A. Hirji MD MPH, Sary Aranki, MD

*

1. Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA

Conflict of Interest: Author S.H. is a consultant for Encare EIAS system. There are no other conflict of interest related to this manuscript

Corresponding Author:

Sary Aranki, MD
Division of Thoracic and Cardiac Surgery
Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA
Email: saranki@bwh.harvard.edu

Word Count: 492/500

Central Picture:

Legend: Sameer A. Hirji MD (left), Sary Aranki MD (right)
Central Message:

The role of 3-Dimensional models appears to be emerging in adult cardiac surgery but the long-term marginal benefit remains to be determined.
Primary cardiac sarcomas account for the majority of malignant primary cardiac tumors, and predominantly occur in young patients without risk factors. Although these tumors often have variable phenotypes, they tend to be generally aggressive in nature resulting in a limited median survival, ranging from 6-24 months based on recent series.1-3 Despite advances in medical therapy and improvement in surgical techniques, surgical debulking is often warranted to improve the oncologic efficiency and overall disease survival.1-3 A large recent epidemiological study of 442 patients, for instance, found that both surgery and chemotherapy were associated with improved survival.3 Some tumors, especially the right-heart sarcomas, often tend to be bulky and infiltrative which can make the surgical resection challenging. In some cases, extensive resection and reconstruction may be required but the extent will not be determined until the time of surgery.

We read with great interest the case report by Kim et al., which utilized 3-D printing to assist with preoperative surgical planning during the resection of a large primary cardiac tumor penetrating the right ventricle.4 To achieve an R0 resection, the authors conducted a series of repeated hands-on simulation using a 3-D printing model to ensure that they were familiar with the right surgical strategy. To their credit, the procedure did require extensive reconstruction of the right ventricle, the atrial septum and the coronary sinus orifice, all of which were successful. Fortunately, for the patient, the final pathology was benign with negative margins. First off all, the authors are to be congratulated for their excellent outcome especially given the high rates of morbidity and mortality associated with surgical resection.5,6 Secondly, the authors are commended for their novel use of 3D models to assist in the planning of such a complex procedure. An important limitation was that the authors did not utilize preoperative magnetic resonance imaging for myocardial tissue characterization, did not perform a biopsy for preoperative tissue diagnosis as well as did not pursue neoadjuvant chemotherapy despite accumulating evidence supporting its role.1-3

In recent years, there is growing interest in adopting 3-Dimensional models to aid in preoperative surgical planning, especially for complex cases. While use of 3D models is more prominent in congenital heart cases,7 thoracic oncologic surgery, and emerging in the planning of complex structural heart procedures such as transcatheter mitral valve replacement8, its role for traditional adult cardiac open surgical procedures is still in its infancy.9 This is likely due to the standardization of most cardiac surgical procedures and the high costs associated with 3-D printing. This case provides some food for thought regarding the potential role of 3-D models in cardiac surgery but also raises some concern regarding their feasibility given the lack of robust
data and standardized guidelines for 3-D printing. Thus, while 3-D models may aid to minimize short term complications, their long-term benefit and cost-effectiveness remains to be determined. Time will tell whether this is a gimmick or a futurist concept.

References

